Division of Automotive Technology, ICT Research Institute, Convergence Research Institute, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Korea.
Department of Electronic Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do 38541, Korea.
Sensors (Basel). 2020 Oct 30;20(21):6202. doi: 10.3390/s20216202.
In this paper, we propose a Doppler spectrum-based passenger detection scheme for a CW (Continuous Wave) radar sensor in vehicle applications. First, we design two new features, referred to as an 'extended degree of scattering points' and a 'different degree of scattering points' to represent the characteristics of the non-rigid motion of a moving human in a vehicle. We also design one newly defined feature referred to as the 'presence of vital signs', which is related to extracting the Doppler frequency of chest movements due to breathing. Additionally, we use a BDT (Binary Decision Tree) for machine learning during the training and test steps with these three extracted features. We used a 2.45 GHz CW radar front-end module with a single receive antenna and a real-time data acquisition module. Moreover, we built a test-bed with a structure similar to that of an actual vehicle interior. With the test-bed, we measured radar signals in various scenarios. We then repeatedly assessed the classification accuracy and classification error rate using the proposed algorithm with the BDT. We found an average classification accuracy rate of 98.6% for a human with or without motion.
在本文中,我们为车辆应用中的 CW(连续波)雷达传感器提出了一种基于多普勒频谱的乘客检测方案。首先,我们设计了两个新特征,分别称为“扩展散射点程度”和“不同散射点程度”,以表示车辆中移动人体非刚性运动的特征。我们还设计了一个新定义的特征,称为“生命迹象存在”,它与提取由于呼吸引起的胸部运动的多普勒频率有关。此外,我们在训练和测试步骤中使用 BDT(二元决策树)使用这三个提取的特征进行机器学习。我们使用具有单个接收天线和实时数据采集模块的 2.45GHz CW 雷达前端模块。此外,我们构建了一个类似于实际车辆内部结构的测试平台。使用该测试平台,我们在各种场景下测量了雷达信号。然后,我们使用 BDT 对提出的算法进行了多次分类准确性和分类错误率评估。我们发现,对于有或没有运动的人体,平均分类准确率为 98.6%。