Suppr超能文献

复杂受限环境下的无人水下航行器(UUV)定位:综述

Localisation of Unmanned Underwater Vehicles (UUVs) in Complex and Confined Environments: A Review.

机构信息

Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.

Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, 21073 Hamburg, Germany.

出版信息

Sensors (Basel). 2020 Oct 30;20(21):6203. doi: 10.3390/s20216203.

Abstract

The inspection of aquatic environments is a challenging activity, which is made more difficult if the environment is complex or confined, such as those that are found in nuclear storage facilities and accident sites, marinas and boatyards, liquid storage tanks, or flooded tunnels and sewers. Human inspections of these environments are often dangerous or infeasible, so remote inspection using unmanned underwater vehicles (UUVs) is used. Due to access restrictions and environmental limitations, such as low illumination levels, turbidity, and a lack of salient features, traditional localisation systems that have been developed for use in large bodies of water cannot be used. This means that UUV capabilities are severely restricted to manually controlled low-quality visual inspections, generating non-geospatially located data. The localisation of UUVs in these environments would enable the autonomous behaviour and the development of accurate maps. This article presents a review of the state-of-the-art in localisation technologies for these environments and identifies areas of future research to overcome the challenges posed.

摘要

水下环境检测是一项极具挑战性的工作,如果环境复杂或受限,如核设施和事故现场、码头和船坞、液体储罐、淹没的隧道和下水道等,检测工作会变得更加困难。由于这些环境通常存在危险或不适合人工检测,因此会使用无人水下机器人(UUV)进行远程检测。由于进入受限和环境限制,例如低光照水平、浑浊度和缺乏明显特征,因此无法使用为大型水体开发的传统定位系统。这意味着 UUV 的能力严重限于手动控制的低质量视觉检测,生成非地理空间定位的数据。在这些环境中对 UUV 进行定位可以实现自主行为并开发精确地图。本文综述了这些环境下的定位技术的最新进展,并确定了未来研究的领域,以克服所面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb9e/7663020/ee7ca821ab8b/sensors-20-06203-g001.jpg

相似文献

1
4
Polar Grid Navigation Algorithm for Unmanned Underwater Vehicles.
Sensors (Basel). 2017 Jul 9;17(7):1599. doi: 10.3390/s17071599.
6
Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles.
Sensors (Basel). 2022 May 20;22(10):3896. doi: 10.3390/s22103896.
8
Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle.
Sensors (Basel). 2020 May 5;20(9):2633. doi: 10.3390/s20092633.
9
An Underwater Positioning System for UUVs Based on LiDAR Camera and Inertial Measurement Unit.
Sensors (Basel). 2022 Jul 20;22(14):5418. doi: 10.3390/s22145418.

本文引用的文献

5
Decommissioning of offshore oil and gas structures - Environmental opportunities and challenges.
Sci Total Environ. 2019 Mar 25;658:973-981. doi: 10.1016/j.scitotenv.2018.12.193. Epub 2018 Dec 13.
6
Modeling and Control of a Micro AUV: Objects Follower Approach.
Sensors (Basel). 2018 Aug 6;18(8):2574. doi: 10.3390/s18082574.
8
Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
PLoS One. 2016 Aug 11;11(8):e0160490. doi: 10.1371/journal.pone.0160490. eCollection 2016.
9
LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.
Sensors (Basel). 2015 Jul 10;15(7):16710-28. doi: 10.3390/s150716710.
10
An investigation towards real time dose rate monitoring, and fuel rod detection in a First Generation Magnox Storage Pond (FGMSP).
Appl Radiat Isot. 2014 Dec;94:254-259. doi: 10.1016/j.apradiso.2014.08.019. Epub 2014 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验