Department of Mathematics, National Institute of Technology Rourkela , Rourkela, India.
Network. 2020 Feb-Nov;31(1-4):142-165. doi: 10.1080/0954898X.2020.1807636. Epub 2020 Nov 5.
The motivation of this investigation is to develop a single-layer Chebyshev Neural Network (ChNN) model to handle singular fractional (arbitrary)-order Lane-Emden type equations. These equations are well-known application problems of astrophysics and quantum mechanics. Fractional Lane-Emden equations are singular so it is very difficult to solve analytically. Thus, an efficient method is required to handle the above equations. Here, our main aim is to use a single-layer ChNN model for solving fractional Lane-Emden equations. ChNN model is one kind of Functional Link Neural Network (FLNN) in which the hidden layer is replaced by a functional expansion block of the input pattern using orthogonalshifted Chebyshev polynomials (SChP). Thus, the network parameters of ChNN are less than the Multi-Layer Artificial Neural Network (MLANN). We have considered factional-order singular nonlinear problems of astrophysics to show the computational effort of the proposed method. Back Propagation algorithm of the unsupervised version has been considered for minimizing the error function and updating the weights of the ChNN model. Computed results are displayed in terms of tables and graphs.
本研究的目的是开发单层切比雪夫神经网络 (ChNN) 模型来处理奇异分数(任意)阶的 Lane-Emden 型方程。这些方程是天体物理学和量子力学中著名的应用问题。分数阶 Lane-Emden 方程是奇异的,因此很难进行解析求解。因此,需要一种有效的方法来处理上述方程。在这里,我们的主要目的是使用单层 ChNN 模型来求解分数阶 Lane-Emden 方程。ChNN 模型是一种功能链接神经网络 (FLNN),其中隐藏层被输入模式的正交移位切比雪夫多项式 (SChP) 的函数扩展块所取代。因此,ChNN 的网络参数少于多层人工神经网络 (MLANN)。我们已经考虑了天体物理学中的分数阶奇异非线性问题,以展示所提出方法的计算工作量。采用无监督版本的反向传播算法来最小化误差函数并更新 ChNN 模型的权重。计算结果以表格和图形的形式显示。