Wang Anran, Zhou Weijun, Huang Aixiang, Chen Minfeng, Tian Qinghua, Chen Jizhang
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
J Colloid Interface Sci. 2021 Mar 15;586:362-370. doi: 10.1016/j.jcis.2020.10.099. Epub 2020 Oct 27.
Due to their low cost, high safety, environmental friendliness, and impressive electrochemical performances, aqueous zinc-ion batteries are considered promising alternative technologies to lithium-ion batteries for use in large-scale applications. However, existing aqueous zinc-ion batteries usually suffer from poor cyclability and cannot operate at subzero temperatures. Herein, to solve these problems, the electrolyte in aqueous zinc-ion batterie is optimized by adding the appropriate amounts of diethyl ether and ethylene glycol. Results show that the addition of 1% diethyl ether contributes to the best cyclability at 25 °C. Furthermore, the addition of 30% ethylene glycol results in the best electrochemical performances at 0 and - 10 °C. This significant performance improvement at low temperatures is ascribed to the high ionic conductivity of the modified electrolyte and the low charge transfer impedance of the battery with the modified electrolyte at 0 and -10 °C. It is also shown that the modified electrolyte can decrease the nucleation overpotential of zinc plating, enhance the interfacial stability between the zinc metal and electrolyte, suppress the zinc dendritic growth and side reactions, and decrease the self-corrosion rate of the zinc anode. This work offers a facile strategy to realize aqueous zinc-ion batteries with excellent cyclability and antifreezing ability and may inspire research on other aqueous energy storage systems.
由于其成本低、安全性高、环境友好以及令人印象深刻的电化学性能,水系锌离子电池被认为是锂离子电池在大规模应用中颇具前景的替代技术。然而,现有的水系锌离子电池通常循环性能较差,且无法在零下温度下工作。在此,为了解决这些问题,通过添加适量的乙醚和乙二醇对水系锌离子电池中的电解质进行了优化。结果表明,添加1%的乙醚有助于在25℃时实现最佳的循环性能。此外,添加30%的乙二醇可在0℃和-10℃时实现最佳的电化学性能。这种在低温下显著的性能提升归因于改性电解质的高离子电导率以及电池在0℃和-10℃时使用改性电解质时的低电荷转移阻抗。研究还表明,改性电解质可以降低锌电镀的成核过电位,增强锌金属与电解质之间的界面稳定性,抑制锌枝晶生长和副反应,并降低锌负极的自腐蚀速率。这项工作提供了一种简便的策略来实现具有优异循环性能和抗冻能力的水系锌离子电池,并可能激发对其他水系储能系统的研究。