Department of Neurology and.
Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA.
JCI Insight. 2020 Nov 5;5(21):141183. doi: 10.1172/jci.insight.141183.
Complex I (also known as NADH-ubiquinone oxidoreductase) deficiency is the most frequent mitochondrial disorder present in childhood. NADH-ubiquinone oxidoreductase iron-sulfur protein 3 (NDUFS3) is a catalytic subunit of the mitochondrial complex I; NDUFS3 is conserved from bacteria and essential for complex I function. Mutations affecting complex I, including in the Ndufs3 gene, cause fatal neurodegenerative diseases, such as Leigh syndrome. No treatment is available for these conditions. We developed and performed a detailed molecular characterization of a neuron-specific Ndufs3 conditional KO mouse model. We showed that deletion of Ndufs3 in forebrain neurons reduced complex I activity, altered brain energy metabolism, and increased locomotor activity with impaired motor coordination, balance, and stereotyped behavior. Metabolomics analyses showed an increase of glycolysis intermediates, suggesting an adaptive response to the complex I defect. Administration of metformin to these mice delayed the onset of the neurological symptoms but not of neuronal loss. This improvement was likely related to enhancement of glucose uptake and utilization, which are known effects of metformin in the brain. Despite reports that metformin inhibits complex I activity, our findings did not show worsening a complex I defect nor increases in lactic acid, suggesting that metformin should be further evaluated for use in patients with mitochondrial encephalopathies.
复合物 I(也称为 NADH-泛醌氧化还原酶)缺陷是儿童期最常见的线粒体疾病。NADH-泛醌氧化还原酶铁硫蛋白 3(NDUFS3)是线粒体复合物 I 的催化亚基;NDUFS3 从细菌中保守存在,对复合物 I 的功能至关重要。影响复合物 I 的突变,包括 Ndufs3 基因的突变,会导致致命的神经退行性疾病,如 Leigh 综合征。这些病症没有有效的治疗方法。我们开发并详细分析了一种神经元特异性 Ndufs3 条件性 KO 小鼠模型。我们发现,前脑神经元中 Ndufs3 的缺失降低了复合物 I 的活性,改变了大脑的能量代谢,并增加了运动活性,同时运动协调性、平衡和刻板行为受损。代谢组学分析显示糖酵解中间产物增加,表明对复合物 I 缺陷的适应性反应。给这些小鼠施用二甲双胍可延迟神经症状的发作,但不能延迟神经元丢失。这种改善可能与增强葡萄糖摄取和利用有关,二甲双胍在大脑中的已知作用。尽管有报道称二甲双胍抑制复合物 I 的活性,但我们的研究结果并未显示复合物 I 缺陷的恶化或乳酸的增加,这表明二甲双胍应进一步评估用于治疗线粒体脑病患者。