Department of Anatomy, School of Biomedical Science, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
Department of Anatomy, School of Biomedical Science, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
Neurobiol Dis. 2021 Jan;147:105159. doi: 10.1016/j.nbd.2020.105159. Epub 2020 Nov 3.
Movement abnormalities of Parkinson's disease (PD) arise from disordered neural activity in multiple interconnected brain structures. The planning and execution of movement requires recruitment of a heterogeneous collection of pyramidal projection neurons in the primary motor cortex (M1). The neural representations of movement in M1 single-cell and field potential recordings are directly and indirectly influenced by the midbrain dopaminergic neurons that degenerate in PD. This review examines M1 functional alterations in PD as uncovered by electrophysiological recordings and neurostimulation studies in patients and experimental animal models. Dysfunction of the parkinsonian M1 depends on the severity and/or duration of dopamine-depletion and the species examined, and is expressed as alterations in movement-related firing dynamics; functional reorganisation of local circuits; and changes in field potential beta oscillations. Neurostimulation methods that modulate M1 activity directly (e.g., transcranial magnetic stimulation) or indirectly (subthalamic nucleus deep brain stimulation) improve motor function in PD patients, showing that targeted neuromodulation of M1 is a realistic therapy. We argue that the therapeutic profile of M1 neurostimulation is likely to be greatly enhanced with alternative technologies that permit cell-type specific control and incorporate feedback from electrophysiological biomarkers measured locally.
帕金森病(PD)的运动异常源于多个相互连接的大脑结构中神经活动的紊乱。运动的计划和执行需要募集初级运动皮层(M1)中的多种不同的锥体投射神经元。M1 单细胞和场电位记录中运动的神经表示直接和间接地受到 PD 中退化的中脑多巴胺能神经元的影响。这篇综述通过对患者和实验动物模型的电生理记录和神经刺激研究,检查了 PD 中 M1 的功能改变。帕金森氏症 M1 的功能障碍取决于多巴胺耗竭的严重程度和/或持续时间以及所检查的物种,并表现为运动相关放电动力学的改变;局部回路的功能重组;以及场电位β振荡的变化。直接调节 M1 活动的神经刺激方法(例如,经颅磁刺激)或间接调节 M1 活动的方法(丘脑底核深部脑刺激)改善了 PD 患者的运动功能,表明靶向 M1 的神经调节是一种现实的治疗方法。我们认为,随着允许细胞类型特异性控制并结合局部测量的电生理生物标志物的反馈的替代技术的出现,M1 神经刺激的治疗谱很可能会大大增强。