Suppr超能文献

基于人诱导多能干细胞的人心肌芯片微器件的构建及其对人心肌组织功能的评价

Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function.

机构信息

Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, 650-0047, Japan.

Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

Sci Rep. 2020 Nov 5;10(1):19201. doi: 10.1038/s41598-020-76062-w.

Abstract

Human iPS cell (iPSC)-derived cardiomyocytes (CMs) hold promise for drug discovery for heart diseases and cardiac toxicity tests. To utilize human iPSC-derived CMs, the establishment of three-dimensional (3D) heart tissues from iPSC-derived CMs and other heart cells, and a sensitive bioassay system to depict physiological heart function are anticipated. We have developed a heart-on-a-chip microdevice (HMD) as a novel system consisting of dynamic culture-based 3D cardiac microtissues derived from human iPSCs and microelectromechanical system (MEMS)-based microfluidic chips. The HMDs could visualize the kinetics of cardiac microtissue pulsations by monitoring particle displacement, which enabled us to quantify the physiological parameters, including fluidic output, pressure, and force. The HMDs demonstrated a strong correlation between particle displacement and the frequency of external electrical stimulation. The transition patterns were validated by a previously reported versatile video-based system to evaluate contractile function. The patterns are also consistent with oscillations of intracellular calcium ion concentration of CMs, which is a fundamental biological component of CM contraction. The HMDs showed a pharmacological response to isoproterenol, a β-adrenoceptor agonist, that resulted in a strong correlation between beating rate and particle displacement. Thus, we have validated the basic performance of HMDs as a resource for human iPSC-based pharmacological investigations.

摘要

人诱导多能干细胞(iPSC)衍生的心肌细胞(CMs)在心脏病药物发现和心脏毒性测试方面具有广阔的应用前景。为了利用人 iPSC 衍生的 CMs,需要建立由 iPSC 衍生的 CMs 和其他心脏细胞组成的三维(3D)心脏组织,以及一个敏感的生物测定系统来描绘生理心脏功能。我们开发了一种心脏芯片微器件(HMD)作为一种新型系统,由基于动态培养的源自人 iPSC 的 3D 心脏微组织和基于微机电系统(MEMS)的微流控芯片组成。HMD 可以通过监测粒子位移来可视化心脏微组织搏动的动力学,从而使我们能够量化包括流体输出、压力和力在内的生理参数。HMD 显示粒子位移与外部电刺激频率之间存在很强的相关性。通过先前报道的一种通用的基于视频的系统来评估收缩功能,可以验证这些模式。这些模式也与 CMs 细胞内钙离子浓度的振荡一致,这是 CM 收缩的基本生物学组成部分。HMD 对异丙肾上腺素(一种β-肾上腺素能受体激动剂)表现出药理反应,导致搏动率与粒子位移之间存在很强的相关性。因此,我们验证了 HMD 作为基于人 iPSC 的药理学研究资源的基本性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34c7/7645446/f2ba519b4d72/41598_2020_76062_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验