Suppr超能文献

苯异噁唑啉-噻二唑并[3,4-b]哒嗪杂合体的设计、合成及分子机制研究作为原卟啉原氧化酶抑制剂。

Design, Synthesis, and Molecular Mechanism Studies of -Phenylisoxazoline-thiadiazolo[3,4-]pyridazine Hybrids as Protoporphyrinogen IX Oxidase Inhibitors.

机构信息

State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

出版信息

J Agric Food Chem. 2020 Nov 25;68(47):13672-13684. doi: 10.1021/acs.jafc.0c05955. Epub 2020 Nov 6.

Abstract

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is an important target for green agrochemical discovery. Herein, a novel -phenylisoxazoline-thiadiazolo[3,4-]pyridazine herbicidal active scaffold was designed by the scaffold hybridization strategy. Systematic structural optimization enabled the discovery of a series of derivatives with excellent weed control at 9.375-150 g ai/ha by the post-emergent application. Some derivatives exhibited improved PPO (NtPPO)-inhibitory activity than fluthiacet-methyl. Of these, , with = 21.8 nM, displayed higher weed control than fluthiacet-methyl at the rate of 12-75 g ai/ha, and selective to maize at 75 g ai/ha. , was converted into a bioactive metabolite ( = 4.6 nM), which exhibited 4.6-fold more potency than in inhibiting the activity of NtPPO. Molecular dynamics simulation explained that formed stronger π-π interaction with Phe392 than that of . This work not only provides a promising lead compound for weed control in maize fields but is also helpful to understand the molecular mechanism and basis of the designed hybrids.

摘要

原卟啉原氧化酶(PPO,EC 1.3.3.4)是绿色农用化学品发现的重要靶标。在此,通过支架杂交策略设计了一种新型 - 苯基异恶唑啉 - 噻二唑并[3,4-]哒嗪类除草剂活性支架。系统的结构优化使我们发现了一系列在 9.375-150 g ai/ha 剂量下具有良好除草活性的衍生物,可通过苗后施用来防治杂草。一些衍生物的 PPO(NtPPO)抑制活性优于氟噻草胺。其中, , = 21.8 nM,在 12-75 g ai/ha 的剂量下比氟噻草胺具有更高的除草活性,在 75 g ai/ha 时对玉米具有选择性。 , 被转化为生物活性代谢物 ( = 4.6 nM),其抑制 NtPPO 活性的效力比 高 4.6 倍。分子动力学模拟表明 与 Phe392 形成了更强的 π-π 相互作用。这项工作不仅为玉米田杂草防治提供了有前途的先导化合物,还有助于理解设计的杂合物的分子机制和基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验