Kottmann Korbinian, Huembeli Patrick, Lewenstein Maciej, Acín Antonio
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain.
ICREA, Pg. Llus Companys 23, 08010 Barcelona, Spain.
Phys Rev Lett. 2020 Oct 23;125(17):170603. doi: 10.1103/PhysRevLett.125.170603.
We demonstrate how to explore phase diagrams with automated and unsupervised machine learning to find regions of interest for possible new phases. In contrast to supervised learning, where data is classified using predetermined labels, we here perform anomaly detection, where the task is to differentiate a normal dataset, composed of one or several classes, from anomalous data. As a paradigmatic example, we explore the phase diagram of the extended Bose Hubbard model in one dimension at exact integer filling and employ deep neural networks to determine the entire phase diagram in a completely unsupervised and automated fashion. As input data for learning, we first use the entanglement spectra and central tensors derived from tensor-networks algorithms for ground-state computation and later we extend our method and use experimentally accessible data such as low-order correlation functions as inputs. Our method allows us to reveal a phase-separated region between supersolid and superfluid parts with unexpected properties, which appears in the system in addition to the standard superfluid, Mott insulator, Haldane-insulating, and density wave phases.
我们展示了如何使用自动化和无监督机器学习来探索相图,以找到可能的新相的感兴趣区域。与使用预定标签对数据进行分类的监督学习不同,我们在此进行异常检测,其任务是将由一个或几个类别组成的正常数据集与异常数据区分开来。作为一个典型例子,我们在精确整数填充的情况下探索一维扩展玻色-哈伯德模型的相图,并使用深度神经网络以完全无监督和自动化的方式确定整个相图。作为学习的输入数据,我们首先使用从张量网络算法导出的纠缠谱和中心张量来进行基态计算,后来我们扩展了我们的方法,并使用诸如低阶关联函数等实验可获取的数据作为输入。我们的方法使我们能够揭示超固体和超流体部分之间具有意外性质的相分离区域,该区域除了标准的超流体、莫特绝缘体、霍尔丹绝缘体和密度波相之外还出现在系统中。