Suppr超能文献

利用增强型机器学习方法并结合人类活动模式来预测城市内的 PM 浓度。

Predicting intraurban PM concentrations using enhanced machine learning approaches and incorporating human activity patterns.

机构信息

College of Architecture, Illinois Institute of Technology, Chicago, IL, USA.

Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA.

出版信息

Environ Res. 2021 May;196:110423. doi: 10.1016/j.envres.2020.110423. Epub 2020 Nov 4.

Abstract

Urban areas contribute substantially to human exposure to ambient air pollution. Numerous statistical prediction models have been used to estimate ambient concentrations of fine particulate matter (PM) and other pollutants in urban environments, with some incorporating machine learning (ML) algorithms to improve predictive power. However, many ML approaches for predicting ambient pollutant concentrations to date have used principal component analysis (PCA) with traditional regression algorithms to explore linear correlations between variables and to reduce the dimensionality of the data. Moreover, while most urban air quality prediction models have traditionally incorporated explanatory variables such as meteorological, land use, transportation/mobility, and/or co-pollutant factors, recent research has shown that local emissions from building infrastructure may also be useful factors to consider in estimating urban pollutant concentrations. Here we propose an enhanced ML approach for predicting urban ambient PM concentrations that hybridizes cascade and PCA methods to reduce the dimensionality of the data-space and explore nonlinear effects between variables. We test the approach using different durations of time series air quality datasets of hourly PM concentrations from three air quality monitoring sites in different urban neighborhoods in Chicago, IL to explore the influence of dynamic human-related factors, including mobility (i.e., traffic) and building occupancy patterns, on model performance. We test 9 state-of-the-art ML algorithms to find the most effective algorithm for modeling intraurban PM variations and we explore the relative importance of all sets of factors on intraurban air quality model performance. Results demonstrate that Gaussian-kernel support vector regression (SVR) was the most effective ML algorithm tested, improving accuracy by 118% compared to a traditional multiple linear regression (MLR) approach. Incorporating the enhanced approach with SVR algorithm increased model performance up to 18.4% for yearlong and 98.7% for month-long hourly datasets, respectively. Incorporating assumptions for human occupancy patterns in dominant building typologies resulted in improvements in model performance by between 4% and 37%. Combined, these innovations can be used to improve the performance and accuracy of urban air quality prediction models compared to conventional approaches.

摘要

城市地区在很大程度上导致了人类暴露于环境空气中的污染。已经有许多统计预测模型被用于估算城市环境中细颗粒物 (PM) 和其他污染物的环境浓度,其中一些模型采用了机器学习 (ML) 算法来提高预测能力。然而,迄今为止,许多用于预测环境污染物浓度的 ML 方法都使用主成分分析 (PCA) 与传统回归算法相结合,以探索变量之间的线性相关性并降低数据的维度。此外,尽管大多数城市空气质量预测模型传统上都纳入了气象、土地利用、交通/流动性和/或共污染物因素等解释变量,但最近的研究表明,建筑基础设施的本地排放也可能是估计城市污染物浓度时需要考虑的有用因素。在这里,我们提出了一种用于预测城市环境 PM 浓度的增强型 ML 方法,该方法将级联和 PCA 方法相结合,以降低数据空间的维度并探索变量之间的非线性影响。我们使用来自伊利诺伊州芝加哥市三个不同城市社区的空气质量监测站点的小时 PM 浓度时间序列空气质量数据集的不同时间段来测试该方法,以探索动态的与人类相关因素(包括流动性(即交通)和建筑物占用模式)对模型性能的影响。我们测试了 9 种最先进的 ML 算法,以找到最有效的用于建模城市内 PM 变化的算法,并探索了所有因素集对城市内空气质量模型性能的相对重要性。结果表明,与传统的多元线性回归 (MLR) 方法相比,高斯核支持向量回归 (SVR) 是测试的最有效的 ML 算法,其准确性提高了 118%。将增强方法与 SVR 算法结合使用,可分别将年长期和月长期每小时数据集的模型性能提高 18.4%和 98.7%。在主导建筑类型中加入对人类占用模式的假设,可将模型性能提高 4%至 37%。总的来说,这些创新可以用于提高城市空气质量预测模型的性能和准确性,与传统方法相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验