Mukai Kazuhiko, Nonaka Takamasa, Uyama Takeshi
Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
Inorg Chem. 2020 Dec 7;59(23):16882-16892. doi: 10.1021/acs.inorgchem.0c01695. Epub 2020 Nov 8.
"Zero-strain" insertion materials are essential for high-performance Li-ion batteries, but the experimental determination of changes in their local structures remains challenging. In this study, we successfully visualized the reaction scheme of a perfect zero-strain material, (LiZn)[LiTi]O with a spinel framework, using operando X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The operando XRD/XAS technique, which provided a series of XRD, Ti K-edge XAS, and Zn K-edge XAS data, can be employed owing to a recently developed tapered undulator and monochromator system. Although previous ex situ XRD measurements indicated the immutable cubic lattice parameter () during the discharge process, these studies unveiled drastic structural variations occurring on the atomic scale between the charge and discharge reactions, such as differences in the , bond distances, and occupancies of the Zn ions. This dynamic information obtained under operating conditions could be useful not only for understanding the zero-strain reaction scheme but also for designing advanced zero-strain insertion materials with enhanced energy density.
“零应变”插入材料对于高性能锂离子电池至关重要,但其局部结构变化的实验测定仍然具有挑战性。在本研究中,我们使用原位X射线衍射(XRD)和X射线吸收光谱(XAS)成功地可视化了具有尖晶石框架的完美零应变材料(LiZn)[LiTi]O的反应过程。由于最近开发的锥形波荡器和单色仪系统,原位XRD/XAS技术能够提供一系列XRD、Ti K边XAS和Zn K边XAS数据。尽管先前的非原位XRD测量表明在放电过程中立方晶格参数不变,但这些研究揭示了在充电和放电反应之间原子尺度上发生的剧烈结构变化,例如键长和Zn离子占有率的差异。在工作条件下获得的这种动态信息不仅有助于理解零应变反应过程,还有助于设计具有更高能量密度的先进零应变插入材料。