Suppr超能文献

ZrO:Ti(=Ca、Y、Nb、W)中的余辉特性及陷阱深度控制

Afterglow Properties and Trap-Depth Control in ZrO:Ti, ( = Ca, Y, Nb, W).

作者信息

Aimi Akihisa, Takahashi Hiroaki, Fujimoto Kenjiro

机构信息

Department of Pure and Applied Chemistry, Faculty of Science and Technology, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.

出版信息

Inorg Chem. 2020 Dec 7;59(23):16865-16871. doi: 10.1021/acs.inorgchem.0c01578. Epub 2020 Nov 8.

Abstract

Ti-doped ZrO is a chemically stable and persistent luminescence material. Doping and co-doping is an effective approach for improving the afterglow properties of phosphors, but few studies have investigated the co-doping of ZrO:Ti systems. This study aimed to synthesize ZrO:Ti, ( = Ca, Y, Ti single-doped, Nb, W) and evaluate the luminescent properties of the resulting materials, with a specific focus on the relationship between trap depth and the valence state of the co-doped cation. The ratio of the luminescent center to co-doped ion was optimized using the combinatorial approach, where 0.09 mol % Ti led to the best afterglow duration. The emission decay curves of each co-doped sample differed significantly, where a change in curvature was observed in the Ti single-doped and W co-doped samples due to the presence of multiple traps. From the thermoluminescence glow curves, the trap originating in an oxygen vacancy with a peak at around 270 K was observed. The trap depth was dependent on electrostatic interactions between the trapped electrons and their surrounding cations, and thus related to the valence of the co-dopant. Overall, co-doping with high-valent cations led to improved afterglow duration.

摘要

钛掺杂的氧化锆是一种化学性质稳定且具有持久发光性能的材料。掺杂和共掺杂是改善磷光体余辉性能的有效方法,但很少有研究对氧化锆:钛体系的共掺杂进行过探究。本研究旨在合成氧化锆:钛,(=钙、钇、钛单掺杂,铌、钨)并评估所得材料的发光性能,特别关注陷阱深度与共掺杂阳离子价态之间的关系。使用组合方法优化了发光中心与共掺杂离子的比例,其中0.09 mol%的钛导致了最佳的余辉持续时间。每个共掺杂样品的发射衰减曲线有显著差异,由于存在多个陷阱,在钛单掺杂和钨共掺杂样品中观察到了曲率变化。从热释光发光曲线中,观察到了源于氧空位且峰值在270 K左右的陷阱。陷阱深度取决于被俘获电子与其周围阳离子之间的静电相互作用,因此与共掺杂剂的价态有关。总体而言,高价阳离子的共掺杂导致余辉持续时间得到改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验