Hueso R, Guillot T, Sánchez-Lavega A
Física Aplicada I, Escuela de Ingeniería de Bilbao, UPV/EHU, 48013 Bilbao, Spain.
Université Côte d'Azur, Laboratoire Lagrange, OCA, CNRS UMR 7293, Nice, France.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190476. doi: 10.1098/rsta.2019.0476. Epub 2020 Nov 9.
The ice giants Uranus and Neptune have hydrogen-based atmospheres with several constituents that condense in their cold upper atmospheres. A small number of bright cloud systems observed in both planets are good candidates for moist convective storms, but their observed properties (size, temporal scales and cycles of activity) differ from moist convective storms in the gas giants. These clouds and storms are possibly due to methane condensation and observations also suggest deeper clouds of hydrogen sulfide (HS) at depths of a few bars. Even deeper, thermochemical models predict clouds of ammonia hydrosulfide (NHSH) and water at pressures of tens to hundreds of bars, forming extended deep weather layers. Because of hydrogen's low molecular weight and the high abundance of volatiles, their condensation imposes a strongly stabilizing vertical gradient of molecular weight larger than the equivalent one in Jupiter and Saturn. The resulting inhibition of vertical motions should lead to a moist convective regime that differs significantly from the one occurring on nitrogen-based atmospheres like those of Earth or Titan. As a consequence, the thermal structure of the deep atmospheres of Uranus and Neptune is not well understood. Similar processes might occur at the deep water cloud of Jupiter in Saturn, but the ice giants offer the possibility to study these physical aspects in the upper methane cloud layer. A combination of orbital and data will be required to understand convection and its role in atmospheric dynamics in the ice giants, and by extension, in hydrogen atmospheres including Jupiter, Saturn and giant exoplanets. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
冰巨行星天王星和海王星具有以氢为基础的大气层,其中有几种成分会在其寒冷的高层大气中凝结。在这两颗行星上观测到的少数明亮云系很可能是潮湿对流风暴,但它们的观测特性(大小、时间尺度和活动周期)与气态巨行星中的潮湿对流风暴不同。这些云和风暴可能是由于甲烷凝结形成的,观测还表明在几巴深度处存在更深的硫化氢(HS)云。更深层处,热化学模型预测在几十到几百巴的压力下会有氢硫化铵(NHSH)云和水云,形成延伸的深层天气层。由于氢的分子量低且挥发性物质丰富,它们的凝结会形成一个比木星和土星中更强的分子量垂直稳定梯度。由此产生的对垂直运动的抑制应该会导致一种与在地球或土卫六等以氮为基础的大气层中出现的潮湿对流状态有显著不同的状态。因此,天王星和海王星深层大气的热结构尚未得到很好的理解。类似的过程可能也发生在木星和土星的深水云处,但冰巨行星为研究这些物理现象提供了在甲烷上层云层进行研究的可能性。需要结合轨道和数据来理解冰巨行星中的对流及其在大气动力学中的作用,进而理解包括木星、土星和巨型系外行星在内的氢大气层中的对流及其作用。本文是“冰巨行星系统的未来探索”讨论会议题的一部分。