Suppr超能文献

基于双向 LSTM 神经网络和注意力机制的全乳腺超声自动肿瘤分割。

Tumor segmentation in automated whole breast ultrasound using bidirectional LSTM neural network and attention mechanism.

机构信息

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China.

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China.

出版信息

Ultrasonics. 2021 Feb;110:106271. doi: 10.1016/j.ultras.2020.106271. Epub 2020 Oct 22.

Abstract

Accurate breast mass segmentation of automated breast ultrasound (ABUS) is a great help to breast cancer diagnosis and treatment. However, the lack of clear boundary and significant variation in mass shapes make the automatic segmentation very challenging. In this paper, a novel automatic tumor segmentation method SC-FCN-BLSTM is proposed by incorporating bi-directional long short-term memory (BLSTM) and spatial-channel attention (SC-attention) module into fully convolutional network (FCN). In order to decrease performance degradation caused by ambiguous boundaries and varying tumor sizes, an SC-attention module is designed to integrate both finer-grained spatial information and rich semantic information. Since ABUS is three-dimensional data, utilizing inter-slice context can improve segmentation performance. A BLSTM module with SC-attention is constructed to model the correlation between slices, which employs inter-slice context to assist segmentation for false positive elimination. The proposed method is verified on our private ABUS dataset of 124 patients with 170 volumes, including 3636 2D labeled slices. The Dice similarity coefficient (DSC), Recall, Precision and Hausdorff distance (HD) of the proposed method are 0.8178, 0.8067, 0.8292 and 11.1367. Experimental results demonstrate that the proposed method offered improved segmentation results compared with existing deep learning-based methods.

摘要

准确的自动乳腺超声(ABUS)乳腺肿块分割对乳腺癌的诊断和治疗有很大的帮助。然而,肿块形状的边界不明确和显著变化使得自动分割极具挑战性。本文提出了一种新的自动肿瘤分割方法 SC-FCN-BLSTM,该方法将双向长短期记忆(BLSTM)和空间通道注意力(SC-attention)模块结合到全卷积网络(FCN)中。为了减少由于边界不明确和肿瘤大小变化引起的性能下降,设计了一个 SC-attention 模块,将更细粒度的空间信息和丰富的语义信息进行集成。由于 ABUS 是三维数据,利用切片间的上下文可以提高分割性能。构建了一个带有 SC-attention 的 BLSTM 模块来对切片间的相关性进行建模,利用切片间的上下文辅助分割,以消除假阳性。在我们的 124 名患者的 170 个容积的私人 ABUS 数据集上验证了该方法,包括 3636 个 2D 标注切片。该方法的 Dice 相似系数(DSC)、召回率、精度和 Hausdorff 距离(HD)分别为 0.8178、0.8067、0.8292 和 11.1367。实验结果表明,与现有的基于深度学习的方法相比,该方法提供了更好的分割结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验