文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种时空基于代理的方法,用于模拟伊朗东北部动物源性皮肤利什曼病的传播。

A spatio-temporal agent-based approach for modeling the spread of zoonotic cutaneous leishmaniasis in northeast Iran.

机构信息

Department of GIS, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, 19967 15433, Iran.

Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.

出版信息

Parasit Vectors. 2020 Nov 11;13(1):572. doi: 10.1186/s13071-020-04447-x.


DOI:10.1186/s13071-020-04447-x
PMID:33176858
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7659076/
Abstract

BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease worldwide, especially the Middle East. Although previous works attempt to model the ZCL spread using various environmental factors, the interactions between vectors (Phlebotomus papatasi), reservoir hosts, humans, and the environment can affect its spread. Considering all of these aspects is not a trivial task. METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions. RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends. CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .

摘要

背景:动物源皮肤利什曼病(ZCL)是一种全球性的被忽视的热带病,尤其是在中东地区。尽管之前的研究工作尝试使用各种环境因素来建立 ZCL 传播模型,但媒介(白蛉)、储存宿主、人类和环境之间的相互作用会影响其传播。考虑到所有这些方面并不是一项简单的任务。

方法:基于主体的模型(ABM)是一种相对较新的方法,它为分析此类复杂系统中的相互作用、生物和环境因素的异质性提供了一个框架。本研究的目的是设计和开发一种基于 GIS 能力的 ABM,结合媒介和储存宿主的生物行为,以及改进的易感-暴露-感染-恢复(SEIR)传染病模型,以探索 ZCL 的传播。实施了各种情景来分析不同部分的未来 ZCL 传播,包括伊朗东北部戈勒斯坦省东北部 Maraveh Tappeh 县,以及替代的社会生态条件。

结果:结果证实,疾病的传播主要发生在沙漠、低海拔地区和河畔人口中心。结果还表明,限制人类的活动可以降低传播的严重程度。此外,ZCL 的传播具有特定的时间模式,因为最常见的病例发生在秋季。评估测试还表明,结果与报告的时空趋势之间存在相似性。

结论:本研究证明了 ABM 对 ZCL 传播进行建模和预测的能力和效率。所提出方法的结果可以被认为是公共卫生管理和控制媒介种群的指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/fa31c8e22327/13071_2020_4447_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/ec993507b4ee/13071_2020_4447_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/547af6339d33/13071_2020_4447_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/2c25c5652424/13071_2020_4447_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/b3a9f29a7209/13071_2020_4447_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/638e4d5cb19a/13071_2020_4447_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/37693e1302cf/13071_2020_4447_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/c46e44a71c8a/13071_2020_4447_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/5452ac2b2e63/13071_2020_4447_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/1b7d2b3c714c/13071_2020_4447_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/d0997f5b0546/13071_2020_4447_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/5e2f51009a11/13071_2020_4447_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/fa31c8e22327/13071_2020_4447_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/ec993507b4ee/13071_2020_4447_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/547af6339d33/13071_2020_4447_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/2c25c5652424/13071_2020_4447_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/b3a9f29a7209/13071_2020_4447_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/638e4d5cb19a/13071_2020_4447_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/37693e1302cf/13071_2020_4447_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/c46e44a71c8a/13071_2020_4447_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/5452ac2b2e63/13071_2020_4447_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/1b7d2b3c714c/13071_2020_4447_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/d0997f5b0546/13071_2020_4447_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/5e2f51009a11/13071_2020_4447_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f52/7659076/fa31c8e22327/13071_2020_4447_Fig12_HTML.jpg

相似文献

[1]
A spatio-temporal agent-based approach for modeling the spread of zoonotic cutaneous leishmaniasis in northeast Iran.

Parasit Vectors. 2020-11-11

[2]
Modeling spatial distribution of as the main reservoir host of zoonotic cutaneous leishmaniasis in northeastern Iran.

J Vector Borne Dis. 2018

[3]
Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya.

PLoS Negl Trop Dis. 2016-2-10

[4]
Detection, identification and molecular typing of Leishmania major in Phlebotomus papatasi from a focus of zoonotic cutaneous leishmaniasis in central of Iran.

Exp Parasitol. 2009-10-23

[5]
Predicting the Distribution of Phlebotomus papatasi (Diptera: Psychodidae), the Primary Vector of Zoonotic Cutaneous Leishmaniasis, in Golestan Province of Iran Using Ecological Niche Modeling: Comparison of MaxEnt and GARP Models.

J Med Entomol. 2017-3-1

[6]
Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran.

Acta Trop. 2018-9

[7]
[Current epidemiology of zoonotic cutaneous leishmaniasis in the Republic of Uzbekistan].

Med Parazitol (Mosk). 2010

[8]
Meriones libycus and Rhombomys opimus (Rodentia: Gerbillidae) are the main reservoir hosts in a new focus of zoonotic cutaneous leishmaniasis in Iran.

Trans R Soc Trop Med Hyg. 1996

[9]
Low diversity of Leishmania parasites in sandflies and the absence of the great gerbil in foci of zoonotic cutaneous leishmaniasis in Fars province, southern Iran.

Trans R Soc Trop Med Hyg. 2013-4-19

[10]
Ecological Niche Modeling of main reservoir hosts of zoonotic cutaneous leishmaniasis in Iran.

Acta Trop. 2016-8

引用本文的文献

[1]
Trend analysis and spatiotemporal distribution of leishmaniasis disease incidence in Sri Lanka: A detailed review from 2009 to 2023.

PLoS Negl Trop Dis. 2025-7-2

[2]
Assessment of the antileishmanial activity of diallyl sulfide combined with meglumine antimoniate on Leishmania major: Molecular docking, in vitro, and animal model.

PLoS One. 2024

[3]
A Geomedical Survey: Is There an Association Between Climatic Conditions and Leishmania Species Distribution in Iran During the Years 1999-2021?

Acta Parasitol. 2024-3

[4]
Field Efficacy of Topical Nano-Liposomal Amphotericin B (Sina Ampholeish®) Alone or in Combination with Glucantime® and Cryotherapy on Human Cutaneous Leishmaniasis.

Iran J Parasitol. 2023

[5]
In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions.

PLoS One. 2023

[6]
Cutaneous leishmaniasis situation analysis in the Islamic Republic of Iran in preparation for an elimination plan.

Front Public Health. 2023

[7]
Spatiotemporal distribution of cutaneous leishmaniasis in Sri Lanka and future case burden estimates.

PLoS Negl Trop Dis. 2021-4

本文引用的文献

[1]
Spatiotemporal Variability of Zoonotic Cutaneous Leishmaniasis Based on Sociodemographic Heterogeneity. The Case of Northeastern Iran, 2011-2016.

Jpn J Infect Dis. 2021-1-22

[2]
Possible introduction of to urban areas determined by epidemiological and clinical profiles of patients with cutaneous leishmaniasis in Casablanca (Morocco).

Parasite Epidemiol Control. 2020-1-3

[3]
Modeling triple-diffusions of infectious diseases, information, and preventive behaviors through a metropolitan social network-An agent-based simulation.

Appl Geogr. 2014-6

[4]
Prediction mapping of human leptospirosis using ANN, GWR, SVM and GLM approaches.

BMC Infect Dis. 2019-11-13

[5]
Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran.

Acta Trop. 2018-12

[6]
Spatial Analyses of the Relation between Rodent's Active Burrows and Incidence of Zoonotic Cutaneous Leishmaniasis in Golestan Province, Northeastern of Iran.

J Arthropod Borne Dis. 2016-10-4

[7]
Predicting the Distribution of Phlebotomus papatasi (Diptera: Psychodidae), the Primary Vector of Zoonotic Cutaneous Leishmaniasis, in Golestan Province of Iran Using Ecological Niche Modeling: Comparison of MaxEnt and GARP Models.

J Med Entomol. 2017-3-1

[8]
Ecoepidemiological characteristics of a hypoendemic focus of zoonotic cutaneous leishmaniasis in north Iran (southeast of Caspian Sea).

J Vector Borne Dis. 2016

[9]
Ecological Niche Modeling of main reservoir hosts of zoonotic cutaneous leishmaniasis in Iran.

Acta Trop. 2016-8

[10]
Do people really know what food retailers exist in their neighborhood? Examining GIS-based and perceived presence of retail food outlets in an eight-county region of South Carolina.

Spat Spatiotemporal Epidemiol. 2015-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索