Takagi R, Yamasaki Y, Yokouchi T, Ukleev V, Yokoyama Y, Nakao H, Arima T, Tokura Y, Seki S
RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan.
Nat Commun. 2020 Nov 11;11(1):5685. doi: 10.1038/s41467-020-19480-8.
Magnetic skyrmion is a topologically protected particle-like object in magnetic materials, appearing as a nanometric swirling spin texture. The size and shape of skyrmion particles can be flexibly controlled by external stimuli, which suggests unique features of their crystallization and lattice transformation process. Here, we investigated the detailed mechanism of structural transition of skyrmion lattice (SkL) in a prototype chiral cubic magnet CuOSeO, by combining resonant soft X-ray scattering (RSXS) experiment and micromagnetic simulation. This compound is found to undergo a triangular-to-square lattice transformation of metastable skyrmions by sweeping magnetic field (B). Our simulation suggests that the symmetry change of metastable SkL is mainly triggered by the B-induced modification of skyrmion core diameter and associated energy cost at the skyrmion-skyrmion interface region. Such internal deformation of skyrmion particle has further been confirmed by probing the higher harmonics in the RSXS pattern. These results demonstrate that the size/shape degree of freedom of skyrmion particle is an important factor to determine their stable lattice form, revealing the exotic manner of phase transition process for topological soliton ensembles in the non-equilibrium condition.
磁斯格明子是磁性材料中一种受拓扑保护的类粒子对象,表现为纳米级的涡旋自旋纹理。斯格明子粒子的尺寸和形状可通过外部刺激灵活控制,这表明其结晶和晶格转变过程具有独特特征。在此,我们通过结合共振软X射线散射(RSXS)实验和微磁模拟,研究了典型手性立方磁体CuOSeO中斯格明子晶格(SkL)结构转变的详细机制。发现该化合物通过扫描磁场(B)使亚稳态斯格明子发生从三角形晶格到正方形晶格的转变。我们的模拟表明,亚稳态SkL的对称性变化主要由磁场诱导的斯格明子核心直径变化以及斯格明子 - 斯格明子界面区域相关的能量成本触发。通过探测RSXS图案中的高次谐波,进一步证实了斯格明子粒子的这种内部变形。这些结果表明,斯格明子粒子的尺寸/形状自由度是决定其稳定晶格形式的重要因素,揭示了非平衡条件下拓扑孤子系综相变过程的奇特方式。