Suppr超能文献

用于单声道独立说话人分离的因果深度CASA

Causal Deep CASA for Monaural Talker-Independent Speaker Separation.

作者信息

Liu Yuzhou, Wang DeLiang

机构信息

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210-1277 USA.

Department of Computer Science and Engineering and the Center for Cognitive and Brain Sciences, The Ohio State University, Columbus, OH 43210-1277 USA.

出版信息

IEEE/ACM Trans Audio Speech Lang Process. 2020;28:2109-2118. doi: 10.1109/taslp.2020.3007779. Epub 2020 Jul 8.

Abstract

Talker-independent monaural speaker separation aims to separate concurrent speakers from a single-microphone recording. Inspired by human auditory scene analysis (ASA) mechanisms, a two-stage deep CASA approach has been proposed recently to address this problem, which achieves state-of-the-art results in separating mixtures of two or three speakers. A main limitation of deep CASA is that it is a non-causal system, while many speech processing applications, e.g., telecommunication and hearing prosthesis, require causal processing. In this study, we propose a causal version of deep CASA to address this limitation. First, we modify temporal connections, normalization and clustering algorithms in deep CASA so that no future information is used throughout the deep network. We then train a -speaker ( ≥ 2) deep CASA system in a speaker-number-independent fashion, generalizable to speech mixtures with up to speakers without the prior knowledge about the speaker number. Experimental results show that causal deep CASA achieves excellent speaker separation performance with known or unknown speaker numbers.

摘要

与说话者无关的单声道说话者分离旨在从单麦克风录音中分离出同时发声的说话者。受人类听觉场景分析(ASA)机制的启发,最近提出了一种两阶段深度CASA方法来解决这个问题,该方法在分离两个或三个说话者的混合语音方面取得了领先成果。深度CASA的一个主要限制是它是一个非因果系统,而许多语音处理应用,例如电信和听力假体,需要因果处理。在本研究中,我们提出了深度CASA的因果版本来解决这一限制。首先,我们修改了深度CASA中的时间连接、归一化和聚类算法,以便在整个深度网络中不使用未来信息。然后,我们以独立于说话者数量的方式训练一个 -说话者(≥2)深度CASA系统,该系统可以推广到具有多达 个说话者的语音混合,而无需事先了解说话者数量。实验结果表明,因果深度CASA在已知或未知说话者数量的情况下都能实现出色的说话者分离性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验