Suppr超能文献

好的,请提供需要翻译的文本。

Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties.

机构信息

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.

出版信息

Chemosphere. 2021 Jan;262:128033. doi: 10.1016/j.chemosphere.2020.128033. Epub 2020 Aug 20.

Abstract

Aerobic granular sludge (AGS) is a promising wastewater treatment innovation, but its instability hinders its broader applications. Understanding the granulation process is vital to address this issue. Extracellular polymeric substances (EPS) play an essential role in sludge granulation. However, one crucial aspect of EPS, the adhesive and viscoelastic properties, has been neglected in AGS studies. In this study, we set up two reactors fed with COD/N ratios of 100: 5 (R1) and 100: 10 (R2) for comparison, to investigate the adhesive and viscoelastic properties of sludge EPS during the sludge granulation. We found that R2 showed a more rapid sludge granulation with more stable granules formed, contained a higher abundance of amoA gene, and had a higher production of polysaccharides than R1. We also found a sharp decrease in polysaccharide production and β-sheets abundance accompanied by granule size decrease in R1 on Day 80, indicating their essential roles in sludge granulation and granule stability. QCM-D (quartz crystal microbalance with dissipation monitoring) results showed that EPS became less adhesive and inclined to form unstable layers on the mineral surfaces along with the sludge granulation process. In contrast, they showed the opposite behavior and became more adhesive on the PVDF sensors. Our results suggested that higher polysaccharides, a higher β-sheets band in proteins, and lower mineral surface-adhesive and viscoelastic properties benefited the aerobic sludge granulation process and the granule maintenance.

摘要

好的,我已明晰文本的具体要求,请你提供需要翻译的文本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验