Chaykin Denis, Jansson Christian, Keil Frerich, Lange Marko, Ohlhus Kai Torben, Rump Siegfried M
Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Strasse 38, Hamburg 21073, Germany.
Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-Campus 3, Hamburg 21073, Germany.
J Chem Theory Comput. 2020 Dec 8;16(12):7342-7356. doi: 10.1021/acs.jctc.0c00497. Epub 2020 Nov 13.
Electronic structure calculations, in particular the computation of the ground state energy, lead to challenging problems in optimization. These problems are of enormous importance in quantum chemistry for calculations of properties of solids and molecules. Minimization methods for computing the ground state energy can be developed by employing a variational approach, where the second-order reduced density matrix defines the variable. This concept leads to large-scale semidefinite programming problems that provide a lower bound for the ground state energy. Upper bounds of the ground state energy can be calculated for example with the Hartree-Fock method or numerically more exact for a given basis set by full CI. However, Nakata et al. ( 200111482828292) observed that due to numerical errors the semidefinite solver produced erroneous results with a lower bound significantly larger than the full CI energy. For the LiH, CH, NH, OH, OH, and HF molecules violations within one mhartree were observed. We applied the software VSDP which takes all numerical errors due to floating-point arithmetic operations into consideration. For two test libraries VSDP provides tight rigorous error bounds lower than full CI energies reported with an accuracy of 0.1 to 0.01 mhartree. Only little computation work must be spent in order to compute close rigorous error bounds for the ground state energy.
电子结构计算,特别是基态能量的计算,在优化方面会带来具有挑战性的问题。这些问题在量子化学中对于固体和分子性质的计算极为重要。通过采用变分方法可以开发用于计算基态能量的最小化方法,其中二阶约化密度矩阵定义变量。这一概念会导致大规模半定规划问题,为基态能量提供一个下界。基态能量的上界例如可以用哈特里 - 福克方法计算,或者对于给定基组通过完全组态相互作用(full CI)在数值上更精确地计算。然而,中田等人(200111482828292)观察到,由于数值误差,半定求解器产生的错误结果的下界明显大于完全组态相互作用能量。对于氢化锂、甲烷、氨、羟基自由基、氢氧根离子和氟化氢分子,观察到误差在一毫哈特里以内。我们应用了软件VSDP,它考虑了由于浮点算术运算产生的所有数值误差。对于两个测试库,VSDP提供了严格的误差界,其下限低于所报告的完全组态相互作用能量,精度为0.1到0.01毫哈特里。为了计算基态能量的紧密严格误差界,只需花费很少的计算量。