Ditsiou Angeliki, Cilibrasi Chiara, Simigdala Nikiana, Papakyriakou Athanasios, Milton-Harris Leanne, Vella Viviana, Nettleship Joanne E, Lo Jae Ho, Soni Shivani, Smbatyan Goar, Ntavelou Panagiota, Gagliano Teresa, Iachini Maria Chiara, Khurshid Sahir, Simon Thomas, Zhou Lihong, Hassell-Hart Storm, Carter Philip, Pearl Laurence H, Owen Robin L, Owens Raymond J, Roe S Mark, Chayen Naomi E, Lenz Heinz-Josef, Spencer John, Prodromou Chrisostomos, Klinakis Apostolos, Stebbing Justin, Giamas Georgios
Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
Sci Adv. 2020 Nov 13;6(46). doi: 10.1126/sciadv.abc3099. Print 2020 Nov.
Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therapy.
阐明由狐猴酪氨酸激酶3(LMTK3)驱动的信号传导有助于药物开发。在此,我们将LMTK3激酶结构域的晶体结构解析到2.1埃分辨率,确定其共有基序和磷酸化蛋白质组,揭示了LMTK3在体外和体内的底物。通过高通量均相时间分辨荧光筛选结合生化、细胞和生物物理分析,我们鉴定出一种有效的LMTK3小分子抑制剂(C28)。功能和机制研究表明,LMTK3是一种热休克蛋白90(HSP90)客户蛋白,其折叠和稳定性需要HSP90,而C28促进蛋白酶体介导的LMTK3降解。LMTK3的药理抑制作用降低了NCI-60细胞系中癌细胞的增殖,同时乳腺癌细胞中的凋亡增加,重现了LMTK3基因沉默的效果。此外,LMTK3抑制作用可减少异种移植和转基因乳腺癌小鼠模型的生长,且在有效剂量下未显示出全身毒性。我们的数据强化了LMTK3作为癌症治疗的可药物化靶点的地位。