Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá.
J Exp Biol. 2020 Dec 22;223(Pt 24):jeb236141. doi: 10.1242/jeb.236141.
Mechanosensory-cued hatching (MCH) is widespread, diverse and important for survival in many animals. From flatworms and insects to frogs and turtles, embryos use mechanosensory cues and signals to inform hatching timing, yet mechanisms mediating mechanosensing are largely unknown. The arboreal embryos of red-eyed treefrogs, , hatch prematurely to escape predation, cued by physical disturbance in snake attacks. When otoconial organs in the developing vestibular system become functional, this response strengthens, but its earlier occurrence indicates another sensor must contribute. Post-hatching, tadpoles use lateral line neuromasts to detect water motion. We ablated neuromast function with gentamicin to assess their role in ' hatching response to disturbance. Prior to vestibular function, this nearly eliminated the hatching response to a complex simulated attack cue, egg jiggling, revealing that neuromasts mediate early MCH. Vestibular function onset increased hatching, independent of neuromast function, indicating young embryos use multiple mechanosensory systems. MCH increased developmentally. All older embryos hatched in response to egg jiggling, but neuromast function reduced response latency. In contrast, neuromast ablation had no effect on the timing or level of hatching in motion-only vibration playbacks. It appears only a subset of egg-disturbance cues stimulate neuromasts; thus, embryos in attacked clutches may receive unimodal or multimodal stimuli. embryos have more neuromasts than described for any other species at hatching, suggesting precocious sensory development may facilitate MCH. Our findings provide insight into the behavioral roles of two mechanosensory systems and open possibilities for exploring sensory perception across taxa in early life stages.
机械感觉 cues 孵化(MCH)在许多动物中广泛存在、多样且对生存至关重要。从扁形动物和昆虫到青蛙和海龟,胚胎利用机械感觉 cues 和信号来告知孵化时间,但介导机械感觉的机制在很大程度上尚不清楚。红眼睛树蛙的树栖胚胎会提前孵化以逃避捕食,这是由蛇攻击时的物理干扰 cues 的。当发育中的前庭系统中的耳石器官变得功能齐全时,这种反应会增强,但它的早期发生表明另一个传感器必须参与。孵化后,蝌蚪使用侧线神经嵴来检测水的运动。我们用庆大霉素消融神经嵴功能,以评估它们在“对干扰的孵化反应”中的作用。在前庭功能之前,这几乎消除了对复杂模拟攻击 cue(卵抖动)的孵化反应,揭示了神经嵴介导早期 MCH。前庭功能的出现增加了孵化,独立于神经嵴功能,表明年轻的胚胎使用多种机械感觉系统。MCH 随时间发育而增加。所有较年长的胚胎都会对卵抖动做出反应而孵化,但神经嵴功能会降低反应潜伏期。相比之下,在仅振动的播放中,神经嵴消融对孵化的时间或水平没有影响。似乎只有一部分卵干扰 cue 刺激神经嵴;因此,受攻击卵堆中的胚胎可能会接收到单模态或多模态刺激。与任何其他在孵化时描述的物种相比, 胚胎具有更多的神经嵴,这表明早熟的感觉发育可能促进了 MCH。我们的发现为两个机械感觉系统的行为作用提供了深入的了解,并为探索早期生命阶段跨分类群的感觉感知开辟了可能性。