Cortés Andrés J, Restrepo-Montoya Manuela, Bedoya-Canas Larry E
Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Rionegro, Colombia.
Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia.
Front Plant Sci. 2020 Oct 21;11:583323. doi: 10.3389/fpls.2020.583323. eCollection 2020.
Studying the genetics of adaptation to new environments in ecologically and industrially important tree species is currently a major research line in the fields of plant science and genetic improvement for tolerance to abiotic stress. Specifically, exploring the genomic basis of local adaptation is imperative for assessing the conditions under which trees will successfully adapt to global climate change. However, this knowledge has scarcely been used in conservation and forest tree improvement because woody perennials face major research limitations such as their outcrossing reproductive systems, long juvenile phase, and huge genome sizes. Therefore, in this review we discuss predictive genomic approaches that promise increasing adaptive selection accuracy and shortening generation intervals. They may also assist the detection of novel allelic variants from tree germplasm, and disclose the genomic potential of adaptation to different environments. For instance, natural populations of tree species invite using tools from the population genomics field to study the signatures of local adaptation. Conventional genetic markers and whole genome sequencing both help identifying genes and markers that diverge between local populations more than expected under neutrality, and that exhibit unique signatures of diversity indicative of "selective sweeps." Ultimately, these efforts inform the conservation and breeding status capable of pivoting forest health, ecosystem services, and sustainable production. Key long-term perspectives include understanding how trees' phylogeographic history may affect the adaptive relevant genetic variation available for adaptation to environmental change. Encouraging "big data" approaches (machine learning-ML) capable of comprehensively merging heterogeneous genomic and ecological datasets is becoming imperative, too.
研究具有重要生态和工业价值的树种适应新环境的遗传学,是目前植物科学和非生物胁迫耐受性遗传改良领域的一条主要研究路线。具体而言,探索局部适应的基因组基础对于评估树木成功适应全球气候变化的条件至关重要。然而,由于木本多年生植物面临诸如异交繁殖系统、幼年期长和基因组庞大等主要研究限制,这方面的知识在保护和林木改良中几乎未被应用。因此,在本综述中,我们讨论了有望提高适应性选择准确性并缩短世代间隔的预测性基因组方法。它们还可能有助于从树木种质中检测新的等位基因变异,并揭示适应不同环境的基因组潜力。例如,树种的自然种群促使我们使用群体基因组学领域的工具来研究局部适应的特征。传统遗传标记和全基因组测序都有助于识别在中性条件下本地种群之间差异超过预期的基因和标记,以及展现出“选择性清除”独特多样性特征的基因和标记。最终,这些努力为能够扭转森林健康、生态系统服务和可持续生产的保护和育种状况提供信息。关键的长期展望包括了解树木的系统地理学历史如何影响可用于适应环境变化的适应性相关遗传变异。鼓励采用能够全面整合异质基因组和生态数据集的“大数据”方法(机器学习 - ML)也变得势在必行。