Suppr超能文献

蛋白激酶Cβ(PKCβ)增加活性氧水平,导致糖尿病足溃疡中的血管内皮损伤。

PKCβ increases ROS levels leading to vascular endothelial injury in diabetic foot ulcers.

作者信息

Liu Zhichuan, Hu Ling, Zhang Tao, Xu Hang, Li Hailin, Yang Zhouqian, Zhou Mei, Smith Hendrea Shaniqua, Li Jing, Ran Jianhua, Deng Zhongliang

机构信息

Department of Emergency, The Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China.

Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University Chongqing 400016, China.

出版信息

Am J Transl Res. 2020 Oct 15;12(10):6409-6421. eCollection 2020.

Abstract

OBJECTIVE

To explore the role and mechanism of oxidative stress injury in the diabetic foot.

METHODS

Immunohistochemistry and staining were used to detect changes in diabetic foot tissue, and the CCK-8 method was used to measure high glucose effect on cell viability. The DCFH-DA assay was used to detect the intracellular ROS content, and colorimetric methods were used to detect the activities of the CAT and SOD enzymes and the NO and MDA content in tissues and cells. In addition, the protein expression levels of PKCβ, p66shc, eNOS, ICAM-1 and NF-κB in tissues and cells were detected by Western blotting, and the distribution of p66shc and eNOS was observed by immunofluorescence.

RESULTS

The results of clinical specimens experiments showed that the DFU group exhibited disordered morphology and increased glucose metabolism, decreased activities of the enzymes CAT and SOD in tissues, and increased MDA and NO contents compared to those in the CON group. Furthermore, protein levels of the p-PKCβ, p-p66shc, ICAM-1, and p-NF-κB were increased, and eNOS protein level was decreased; these results were consistent in clinical specimens and in vitro experiments.

CONCLUSIONS

High glucose levels may induce oxidative stress injury in cells and tissues by activating the PKCβ-p66shc signaling pathway.

摘要

目的

探讨氧化应激损伤在糖尿病足中的作用及机制。

方法

采用免疫组织化学和染色检测糖尿病足组织的变化,采用CCK-8法检测高糖对细胞活力的影响。采用DCFH-DA法检测细胞内活性氧含量,采用比色法检测组织和细胞中CAT和SOD酶活性以及NO和MDA含量。此外,采用蛋白质印迹法检测组织和细胞中PKCβ、p66shc、eNOS、ICAM-1和NF-κB的蛋白表达水平,采用免疫荧光法观察p66shc和eNOS的分布。

结果

临床标本实验结果显示,与对照组相比,糖尿病足溃疡(DFU)组形态紊乱,糖代谢增加,组织中CAT和SOD酶活性降低,MDA和NO含量增加。此外,p-PKCβ、p-p66shc、ICAM-及p-NF-κB的蛋白水平升高,eNOS蛋白水平降低;这些结果在临床标本和体外实验中一致。

结论

高糖水平可能通过激活PKCβ-p66shc信号通路诱导细胞和组织氧化应激损伤。

相似文献

1
PKCβ increases ROS levels leading to vascular endothelial injury in diabetic foot ulcers.
Am J Transl Res. 2020 Oct 15;12(10):6409-6421. eCollection 2020.
4
The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy.
J Pharm Pharmacol. 2019 Mar;71(3):338-347. doi: 10.1111/jphp.13043. Epub 2018 Nov 12.
5
[Moxibustion of 45 ℃ at "Zusanli" (ST36) improves vascular endothelial oxidative stress in hyperlipidemia rats].
Zhen Ci Yan Jiu. 2023 Apr 25;48(4):331-8. doi: 10.13702/j.1000-0607.20220056.
6
[Mechanism of maggot debridement therapy in promoting wound angiogenesis in patients with diabetic foot ulcer].
Zhonghua Shao Shang Za Zhi. 2020 Nov 20;36(11):1040-1049. doi: 10.3760/cma.j.cn501120-20191022-00409.
7
SIRT1 suppresses high glucose and palmitate-induced osteoclast differentiation via deacetylating p66Shc.
Mol Cell Endocrinol. 2018 Oct 15;474:97-104. doi: 10.1016/j.mce.2018.02.015. Epub 2018 Feb 24.
8
Bradykinin alleviates DR retinal endothelial injury by regulating HMGB-1/NF-κB pathway.
Eur Rev Med Pharmacol Sci. 2019 Jul;23(13):5535-5541. doi: 10.26355/eurrev_201907_18286.

引用本文的文献

1
Role of nuclear factor erythroid 2-related factor 2 in negative pressure wound therapy for diabetic foot ulcers.
World J Diabetes. 2025 May 15;16(5):104350. doi: 10.4239/wjd.v16.i5.104350.
2
Mesenchymal Stem Cell-Derived Exosomes Hold Promise in the Treatment of Diabetic Foot Ulcers.
Int J Nanomedicine. 2025 May 6;20:5837-5857. doi: 10.2147/IJN.S516533. eCollection 2025.
4
The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction.
Cardiovasc Diabetol. 2023 Sep 2;22(1):237. doi: 10.1186/s12933-023-01965-7.
6
Curcumin coated 3D biocomposite scaffolds based on chitosan and cellulose for diabetic wound healing.
Heliyon. 2022 Nov 7;8(11):e11442. doi: 10.1016/j.heliyon.2022.e11442. eCollection 2022 Nov.

本文引用的文献

1
Current Therapeutic Strategies in Diabetic Foot Ulcers.
Medicina (Kaunas). 2019 Oct 25;55(11):714. doi: 10.3390/medicina55110714.
2
Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation.
Biomech Model Mechanobiol. 2019 Dec;18(6):1947-1964. doi: 10.1007/s10237-019-01187-5. Epub 2019 Jun 15.
3
Mitochondrial electron transport chain, ROS generation and uncoupling (Review).
Int J Mol Med. 2019 Jul;44(1):3-15. doi: 10.3892/ijmm.2019.4188. Epub 2019 May 8.
4
Multidisciplinary approach to scheduling surgery for diabetic foot: a case report.
BMC Musculoskelet Disord. 2019 Apr 12;20(1):168. doi: 10.1186/s12891-019-2522-3.
5
Effects of Centella asiatica on skeletal muscle structure and key enzymes of glucose and glycogen metabolism in type 2 diabetic rats.
Biomed Pharmacother. 2019 Apr;112:108715. doi: 10.1016/j.biopha.2019.108715. Epub 2019 Mar 1.
8
Differences between national and international guidelines for the management of diabetic foot disease.
Diabetes Metab Res Rev. 2019 Feb;35(2):e3101. doi: 10.1002/dmrr.3101. Epub 2018 Dec 20.
9
Preventive role of Pycnogenol against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats.
Food Chem Toxicol. 2019 Feb;124:54-63. doi: 10.1016/j.fct.2018.11.038. Epub 2018 Nov 19.
10
New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis.
Redox Biol. 2019 Jan;20:247-260. doi: 10.1016/j.redox.2018.09.025. Epub 2018 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验