文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

过渡尺寸原子精确金纳米团簇的非均匀量子化单电子充电及电化学-光学见解

Inhomogeneous Quantized Single-Electron Charging and Electrochemical-Optical Insights on Transition-Sized Atomically Precise Gold Nanoclusters.

作者信息

Chen Shuang, Higaki Tatsuya, Ma Hedi, Zhu Manzhou, Jin Rongchao, Wang Gangli

机构信息

Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China.

Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China.

出版信息

ACS Nano. 2020 Dec 22;14(12):16781-16790. doi: 10.1021/acsnano.0c04914. Epub 2020 Nov 16.


DOI:10.1021/acsnano.0c04914
PMID:33196176
Abstract

Small differences in electronic structures, such as an emerging energy band gaps or the splitting of degenerated orbitals, are very challenging to resolve but important for nanomaterials properties. A signature electrochemical property called quantized double layer charging, , "continuous" one-electron transfers (1e, ETs), in atomically precise Au(TBBT), Au(BM), and Au(TBBT) is analyzed to reveal the nonmetallic to metallic transitions (whereas TBBT is 4--butylbenzenethiol and BM is benzyl mercaptan; abbreviated as Au, Au, and Au). Subhundred milli-eV energy differences are resolved among the "often-approximated uniform" peak spacings from multipairs of reversible redox peaks in voltammetric analysis, with single ETs as internal standards for calibration and under temperature variations. Cyclic and differential pulse voltammetry experiments reveal a 0.15 eV energy gap for Au and a 0.17 eV gap for Au at 298 K. Au is confirmed metallic, displaying a "bulk-continuum" charging response without an energy gap. The energy gaps and double layer capacitances of Au and Au increase as the temperature decreases. The temperature dependences of charging energies and HOMO-LUMO gaps of Au and Au are attributed to the counterion permeation and the steric hindrance of ligand, as well as their molecular compositions. With the subtle energy differences resolved, spectroelectrochemistry features of Au and Au are compared with ultrafast spectroscopy to demonstrate a generalizable analysis approach to correlate steady-state and transient energy diagram for the energy-in processes. Electrochemiluminescence (ECL), one of the energy-out processes after the charge transfer reactions, is reported for the three samples. The ECL intensity of Au is negligible, whereas the ECLs of Au and Au are relatively stronger and observable (but orders of magnitudes weaker than our recently reported bimetallic AuAg). Results from these atomically precise nanoclusters also demonstrate that the combined voltammetric and spectroscopic analyses, together with temperature variations, are powerful tools to reveal subtle differences and gain insights otherwise inaccessible in other nanomaterials.

摘要

电子结构中的微小差异,例如新兴的能带隙或简并轨道的分裂,很难分辨,但对纳米材料的性质很重要。对原子精确的Au(TBBT)、Au(BM)和Au中一种称为量子化双层充电的标志性电化学性质,即“连续”单电子转移(1e, ETs)进行了分析,以揭示从非金属到金属的转变(其中TBBT是4-丁基苯硫醇,BM是苄基硫醇;简称为Au、Au和Au)。在伏安分析中,以单电子转移作为校准的内标,并在温度变化的情况下,分辨出多对可逆氧化还原峰的“常被近似为均匀”的峰间距之间小于百毫电子伏特的能量差异。循环伏安法和差分脉冲伏安法实验表明,在298 K时,Au的能隙为0.15 eV,Au的能隙为0.17 eV。Au被确认为金属,显示出“体连续”充电响应,没有能隙。Au和Au的能隙和双层电容随着温度的降低而增加。Au和Au的充电能量和HOMO-LUMO能隙的温度依赖性归因于抗衡离子渗透、配体的空间位阻及其分子组成。随着微小能量差异的分辨,将Au和Au的光谱电化学特征与超快光谱进行比较,以证明一种可推广的分析方法,用于关联能量输入过程的稳态和瞬态能量图。报道了这三个样品的电化学发光(ECL),这是电荷转移反应后的能量输出过程之一。Au的ECL强度可以忽略不计,而Au和Au的ECL相对较强且可观察到(但比我们最近报道的双金属AuAg弱几个数量级)。这些原子精确的纳米团簇的结果还表明,伏安法和光谱分析相结合,再加上温度变化,是揭示其他纳米材料中难以察觉的细微差异并深入了解其性质的有力工具。

相似文献

[1]
Inhomogeneous Quantized Single-Electron Charging and Electrochemical-Optical Insights on Transition-Sized Atomically Precise Gold Nanoclusters.

ACS Nano. 2020-12-22

[2]
Controlling magnetism of Au(TBBT) nanoclusters at single electron level and implication for nonmetal to metal transition.

Chem Sci. 2019-9-4

[3]
Quantized double layer charging of Au130(SR)50 nanomolecules.

Analyst. 2014-4-21

[4]
A Grand Avenue to Au Nanocluster Electrochemiluminescence.

Acc Chem Res. 2017-1-12

[5]
Origin of the structural stability of cage-like Au clusters.

Nanoscale. 2021-11-11

[6]
Transformation of Au144(SCH2CH2Ph)60 to Au133(SPh-tBu)52 Nanomolecules: Theoretical and Experimental Study.

J Phys Chem Lett. 2015-6-4

[7]
The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question.

ACS Nano. 2021-9-28

[8]
Sharp Transition from Nonmetallic Au to Metallic Au with Nascent Surface Plasmon Resonance.

J Am Chem Soc. 2018-4-19

[9]
Temperature-dependent quantized double layer charging of monolayer-protected gold clusters.

Anal Chem. 2003-3-15

[10]
Electrochemistry of Atomically Precise Metal Nanoclusters.

Acc Chem Res. 2019-1-15

引用本文的文献

[1]
Rational Design and Applications of Ultrasmall Gold Nanoparticles.

Top Curr Chem (Cham). 2025-9-8

[2]
Long Lasting Research on the Atomically Precise Au(SR) Nanocluster.

ACS Cent Sci. 2025-7-14

[3]
Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters.

Nat Commun. 2023-6-8

[4]
Coherent vibrational dynamics of Au(SR) nanoclusters.

Chem Sci. 2022-6-17

[5]
Understanding nascent plasmons and metallic bonding in atomically precise gold nanoclusters.

Chem Sci. 2022-1-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索