Suppr超能文献

针对表达Trop-2的三阴性乳腺癌中戈沙妥珠单抗疗效的预测生物标志物。

Predictive biomarkers for sacituzumab govitecan efficacy in Trop-2-expressing triple-negative breast cancer.

作者信息

Cardillo Thomas M, Rossi Diane L, Zalath Maria B, Liu Donglin, Arrojo Roberto, Sharkey Robert M, Chang Chien-Hsing, Goldenberg David M

机构信息

Immunomedics, Inc., Morris Plains, NJ 07950, USA.

Currently employed with FrontAim Biomedicines Inc., Princeton, NJ 08540, USA.

出版信息

Oncotarget. 2020 Oct 27;11(43):3849-3862. doi: 10.18632/oncotarget.27766.

Abstract

Sacituzumab govitecan (SG) is an antibody-drug conjugate composed of a humanized anti-Trop-2 IgG antibody conjugated a hydrolysable linker to SN-38, the topoisomerase I-inhibitory active component of irinotecan. We investigated whether Trop-2-expression and homologous recombination repair (HRR) of SN-38-mediated double-strand DNA (dsDNA) breaks play a role in the sensitivity of triple-negative breast cancer (TNBC) to SG. Activation of HRR pathways, as evidenced by Rad51 expression, was assessed in SG-sensitive cell lines with low and moderate Trop-2-expression (SK-MES-1 squamous cell lung carcinoma and HCC1806 TNBC, respectively), compared to a low Trop-2-expressing, less SG-sensitive TNBC cell line (MDA-MB-231). Further, two Trop-2-transfectants of MDA-MB-231, C13 and C39 (4- and 25-fold higher Trop-2, respectively), were treated in mice with SG to determine whether increasing Trop-2 expression improves SG efficacy. SG mediated >2-fold increase in Rad51 in MDA-MB-231 but had no effect in SK-MES-1 or HCC1806, resulting in lower levels of dsDNA breaks in MDA-MB-231. SG and saline produced similar effects in parental MDA-MB-231 tumor-bearing mice (median survival time (MST) = 21d and 19.5d, respectively). However, in mice bearing higher Trop-2-expressing C13 and C39 tumors after Trop-2 transfection, SG provided a significant survival benefit, even compared to irinotecan (MST = 97d 35d for C13, and 81d 28d for C39, respectively; < 0.0007). These results suggest that SG could provide better clinical benefit than irinotecan in patients with HRR-proficient tumors expressing high levels of Trop-2, as well as to patients with HRR-deficient tumors expressing low/moderate levels of Trop-2.

摘要

戈沙妥珠单抗(SG)是一种抗体药物偶联物,由人源化抗Trop-2 IgG抗体与可水解连接子连接SN-38(伊立替康的拓扑异构酶I抑制活性成分)组成。我们研究了Trop-2表达以及SN-38介导的双链DNA(dsDNA)断裂的同源重组修复(HRR)是否在三阴性乳腺癌(TNBC)对SG的敏感性中发挥作用。与低表达Trop-2、对SG敏感性较低的TNBC细胞系(MDA-MB-231)相比,在低表达和中等表达Trop-2的SG敏感细胞系(分别为SK-MES-1肺鳞状细胞癌和HCC1806 TNBC)中评估了由Rad51表达所证明的HRR途径的激活情况。此外,用SG处理MDA-MB-231的两种Trop-2转染细胞系C13和C39(Trop-2分别高4倍和25倍)的小鼠,以确定增加Trop-2表达是否能提高SG疗效。SG使MDA-MB-231中的Rad51增加超过2倍,但对SK-MES-1或HCC1806没有影响,导致MDA-MB-231中的dsDNA断裂水平降低。SG和生理盐水对携带亲本MDA-MB-231肿瘤的小鼠产生相似的效果(中位生存时间(MST)分别为21天和19.5天)。然而,在Trop-2转染后携带高表达Trop-2的C13和C39肿瘤的小鼠中,SG提供了显著的生存益处,甚至与伊立替康相比也是如此(C13的MST = 97天对35天,C39的MST = 81天对28天;P < 0.0007)。这些结果表明,SG在表达高水平Trop-2的HRR功能正常的肿瘤患者以及表达低/中等水平Trop-2的HRR缺陷肿瘤患者中可能比伊立替康提供更好的临床益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f7/7597411/4847c605d0ba/oncotarget-11-3849-g001.jpg

相似文献

1
Predictive biomarkers for sacituzumab govitecan efficacy in Trop-2-expressing triple-negative breast cancer.
Oncotarget. 2020 Oct 27;11(43):3849-3862. doi: 10.18632/oncotarget.27766.
2
Sacituzumab govitecan: past, present and future of a new antibody-drug conjugate and future horizon.
Future Oncol. 2022 Sep;18(28):3199-3215. doi: 10.2217/fon-2022-0407. Epub 2022 Sep 7.
5
Antibody-drug conjugates targeting TROP-2: Clinical development in metastatic breast cancer.
Breast. 2022 Dec;66:169-177. doi: 10.1016/j.breast.2022.10.007. Epub 2022 Oct 18.
10
Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan.
MAbs. 2019 Aug/Sep;11(6):987-995. doi: 10.1080/19420862.2019.1632115. Epub 2019 Jul 18.

引用本文的文献

1
Unleashing NK cells for cancer immunotherapy in lung cancer: biologic challenges and clinical advances.
J Exp Clin Cancer Res. 2025 Aug 23;44(1):251. doi: 10.1186/s13046-025-03503-7.
2
TROP2-targeted molecular imaging: a promising tool for precision oncology.
Am J Nucl Med Mol Imaging. 2025 Jun 25;15(3):109-123. doi: 10.62347/BKIS3836. eCollection 2025.
3
TROP2 expression and therapeutic targeting in uterine carcinosarcoma.
Gynecol Oncol. 2025 Jun;197:129-138. doi: 10.1016/j.ygyno.2025.04.590. Epub 2025 May 8.
4
Resistance to antibody-drug conjugates: A review.
Acta Pharm Sin B. 2025 Feb;15(2):737-756. doi: 10.1016/j.apsb.2024.12.036. Epub 2024 Dec 31.
5
Advances in adoptive cell therapies in small cell lung cancer.
Explor Target Antitumor Ther. 2025 Mar 26;6:1002302. doi: 10.37349/etat.2025.1002302. eCollection 2025.
6
177Lu-Labeled Antibody-Drug Conjugate: A Dual-Mechanistic Treatment Modality in Solid Tumors.
Mol Cancer Ther. 2025 Jun 4;24(6):907-919. doi: 10.1158/1535-7163.MCT-24-0254.
7
The Mode of Action and Clinical Outcomes of Sacituzumab Govitecan in Solid Tumors.
Clin Cancer Res. 2025 Apr 14;31(8):1390-1399. doi: 10.1158/1078-0432.CCR-24-1525.
8
Distinct effects of sacituzumab govitecan and berzosertib on DNA damage response in ovarian cancer.
iScience. 2024 Oct 29;27(12):111283. doi: 10.1016/j.isci.2024.111283. eCollection 2024 Dec 20.
10
Antibody-Drug Conjugates to Promote Immune Surveillance: Lessons Learned from Breast Cancer.
Biomedicines. 2024 Jul 5;12(7):1491. doi: 10.3390/biomedicines12071491.

本文引用的文献

2
Arctigenin Enhances the Cytotoxic Effect of Doxorubicin in MDA-MB-231 Breast Cancer Cells.
Int J Mol Sci. 2020 Apr 23;21(8):2997. doi: 10.3390/ijms21082997.
3
Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51.
Breast Cancer Res. 2019 Oct 22;21(1):115. doi: 10.1186/s13058-019-1204-2.
4
Decoding cancer heterogeneity: studying patient-specific signaling signatures towards personalized cancer therapy.
Theranostics. 2019 Jul 9;9(18):5149-5165. doi: 10.7150/thno.31657. eCollection 2019.
5
Targeting Topoisomerase I in the Era of Precision Medicine.
Clin Cancer Res. 2019 Nov 15;25(22):6581-6589. doi: 10.1158/1078-0432.CCR-19-1089. Epub 2019 Jun 21.
7
Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer.
N Engl J Med. 2019 Feb 21;380(8):741-751. doi: 10.1056/NEJMoa1814213.
8
Function and Interactions of ERCC1-XPF in DNA Damage Response.
Molecules. 2018 Dec 5;23(12):3205. doi: 10.3390/molecules23123205.
9
RAD-ical New Insights into RAD51 Regulation.
Genes (Basel). 2018 Dec 13;9(12):629. doi: 10.3390/genes9120629.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验