Suppr超能文献

中国绿潮期间石莼生物量的数值研究——迈向更清洁的紫菜养殖。

A numerical study of the Ulva prolifera biomass during the green tides in China - toward a cleaner Porphyra mariculture.

机构信息

Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, China.

Key Laboratory of Marine Science and Numerical Modeling, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.

出版信息

Mar Pollut Bull. 2020 Dec;161(Pt B):111805. doi: 10.1016/j.marpolbul.2020.111805. Epub 2020 Nov 14.

Abstract

The green tides caused by Ulva prolifera have become a recurrent phenomenon in Yellow Sea, China. Investigating the factors governing the biomass of green tides is important for developing management strategies. In this study, an U. prolifera growth model was combined with a hydrodynamic model. This biophysical model can reasonably reproduce the spatiotemporal variation of the green tides in 2012. Among three zones (northern, central, and southern-zones) of Porphyra mariculture region, the northern and central zones were more important in controlling the bloom intensity, and the central zone was the key area in controlling the amount of biomass landed on beaches. Due to the limitation of temperature and nutrients, an earlier or postponed facility recycling might effectively reduce the magnitude of green tides in 2012. This study provides useful information for mitigation of green tides and management of Porphyra mariculture.

摘要

浒苔绿潮已成为中国黄海的一种频发现象。研究控制浒苔生物量的因素对于制定管理策略非常重要。本研究将浒苔生长模型与水动力模型相结合。该生物物理模型可以合理地再现 2012 年浒苔的时空变化。在紫菜养殖区的三个区域(北部、中部和南部)中,北部和中部区域对控制藻华强度更为重要,而中部区域是控制登陆海滩生物量的关键区域。由于温度和营养物质的限制,提前或推迟设施回收可能会有效减少 2012 年浒苔的规模。本研究为减轻浒苔和管理紫菜养殖提供了有用的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验