Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India.
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India.
J Mol Biol. 2021 Aug 20;433(17):166691. doi: 10.1016/j.jmb.2020.10.025. Epub 2020 Oct 22.
Magnesium is the most abundant divalent cation present in the cell, and an abnormal Mg homeostasis is associated with several diseases in humans. However, among ion channels, the mechanisms of intracellular regulation and transport of Mg are poorly understood. MgtE is a homodimeric Mg-selective channel and is negatively regulated by high intracellular Mg concentration where the cytoplasmic domain of MgtE acts as a Mg sensor. Most of the previous biophysical studies on MgtE have been carried out in detergent micelles and the information regarding gating-related structural dynamics of MgtE in physiologically-relevant membrane environment is scarce. In this work, we monitored the changes in gating-related structural dynamics, hydration dynamics and conformational heterogeneity of MgtE in micelles and membranes using the intrinsic site-directed Trp fluorescence. For this purpose, we have engineered six single-Trp mutants in the functional Trp-less background of MgtE to obtain site-specific information on the gating-related structural dynamics of MgtE in membrane-mimetic systems. Our results indicate that Mg-induced gating might involve the possibility of a 'conformational wave' from the cytosolic N-domain to transmembrane domain of MgtE. Although MgtE is responsive to Mg-induced gating in both micelles and membranes, the organization and dynamics of MgtE is substantially altered in physiologically important phospholipid membranes compared to micelles. This is accompanied by significant changes in hydration dynamics and conformational heterogeneity. Overall, our results highlight the importance of lipid-protein interactions and are relevant for understanding gating mechanism of magnesium channels in general, and MgtE in particular.
镁是细胞中含量最丰富的二价阳离子,镁离子稳态失衡与人类的多种疾病有关。然而,在离子通道中,镁离子的细胞内调控和运输机制仍知之甚少。MgtE 是一种同源二聚体镁离子选择性通道,其活性受到细胞内高镁浓度的负调控,MgtE 的细胞质结构域充当镁离子感受器。大多数关于 MgtE 的先前生物物理研究都是在去污剂胶束中进行的,关于 MgtE 在生理相关膜环境中的门控相关结构动力学的信息很少。在这项工作中,我们使用内源位定点 Trp 荧光监测了 MgtE 在胶束和膜中的门控相关结构动力学、水合动力学和构象异质性的变化。为此,我们在无 Trp 的 MgtE 功能背景下构建了六个单-Trp 突变体,以获得关于 MgtE 在膜模拟系统中门控相关结构动力学的定点信息。我们的结果表明,镁离子诱导的门控可能涉及从 MgtE 的胞质 N 结构域到跨膜结构域的“构象波”的可能性。尽管 MgtE 在胶束和膜中都对镁离子诱导的门控有反应,但与胶束相比,MgtE 在生理上重要的磷脂膜中的组织和动力学发生了实质性改变。这伴随着水合动力学和构象异质性的显著变化。总的来说,我们的结果强调了脂质-蛋白质相互作用的重要性,这对于理解镁离子通道的门控机制,特别是 MgtE 的门控机制具有重要意义。