Department of Surgery, Duke University Medical Center, Durham, NC, USA.
Duke Cancer Institute, Durham, NC, USA.
Ann Surg Oncol. 2021 Jul;28(7):3501-3510. doi: 10.1245/s10434-020-09277-w. Epub 2020 Nov 17.
Although sentinel lymph node (SLN) biopsy is a standard procedure used to identify patients at risk for melanoma recurrence, it fails to risk-stratify certain patients accurately. Because processes in SLNs regulate anti-tumor immune responses, the authors hypothesized that SLN gene expression may be used for risk stratification.
The Nanostring nCounter PanCancer Immune Profiling Panel was used to quantify expression of 730 immune-related genes in 60 SLN specimens (31 positive [pSLNs], 29 negative [nSLNs]) from a retrospective melanoma cohort. A multivariate prediction model for recurrence-free survival (RFS) was created by applying stepwise variable selection to Cox regression models. Risk scores calculated on the basis of the model were used to stratify patients into low- and high-risk groups. The predictive power of the model was assessed using the Kaplan-Meier and log-rank tests.
During a median follow-up period of 6.3 years, 20 patients (33.3%) experienced recurrence (pSLN, 45.2% [14/31] vs nSLN, 20.7% [6/29]; p = 0.0445). A fitted Cox regression model incorporating 12 genes accurately predicted RFS (C-index, 0.9919). Improved RFS was associated with increased expression of TIGIT (p = 0.0326), an immune checkpoint, and decreased expression of CXCL16 (p = 0.0273), a cytokine important in promoting dendritic and T cell interactions. Independent of SLN status, the model in this study was able to stratify patients into cohorts at high and low risk for recurrence (p < 0.001, log-rank).
Expression profiles of the SLN gene are associated with melanoma recurrence and may be able to identify patients as high or low risk regardless of SLN status, potentially enhancing patient selection for adjuvant therapy.
虽然前哨淋巴结(SLN)活检是一种用于识别黑色素瘤复发风险患者的标准程序,但它无法准确地对某些患者进行风险分层。由于 SLN 中的过程调节抗肿瘤免疫反应,作者假设 SLN 基因表达可用于风险分层。
作者使用 Nanostring nCounter PanCancer 免疫分析基因表达谱面板对 60 例 SLN 标本(31 例阳性[pSLN],29 例阴性[nSLN])进行了 730 个免疫相关基因的定量表达分析。作者通过对 Cox 回归模型进行逐步变量选择,建立了无复发生存率(RFS)的多变量预测模型。基于模型计算的风险评分用于将患者分层为低风险和高风险组。采用 Kaplan-Meier 和对数秩检验评估模型的预测能力。
在中位随访 6.3 年期间,20 例患者(33.3%)经历了复发(pSLN,45.2%[14/31] vs nSLN,20.7%[6/29];p=0.0445)。包含 12 个基因的拟合 Cox 回归模型准确地预测了 RFS(C 指数,0.9919)。RFS 的改善与免疫检查点 TIGIT 表达增加(p=0.0326)和细胞因子 CXCL16 表达降低(p=0.0273)相关,后者对促进树突状细胞和 T 细胞相互作用很重要。独立于 SLN 状态,本研究中的模型能够将患者分层为复发风险高和低的队列(p<0.001,对数秩)。
SLN 基因表达谱与黑色素瘤复发相关,并且无论 SLN 状态如何,都可能能够识别出高风险或低风险的患者,从而有可能增强辅助治疗的患者选择。