Suppr超能文献

定量蛋白质组学在增强生理基于药代动力学模型在疾病状态下的预测能力方面的应用。

Utility of Quantitative Proteomics for Enhancing the Predictive Ability of Physiologically Based Pharmacokinetic Models Across Disease States.

机构信息

Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.

出版信息

J Clin Pharmacol. 2020 Oct;60 Suppl 1:S17-S35. doi: 10.1002/jcph.1709.

Abstract

Disease states such as liver cirrhosis and chronic kidney disease can lead to altered pharmacokinetics (PK) of drugs by influencing drug absorption, blood flow to organs, plasma protein binding, apparent volume of distribution, and drug-metabolizing enzyme and transporter (DMET) abundance. Narrow therapeutic index drugs are particularly vulnerable to undesired pharmacodynamics (PD) because of the changes in drug PK in disease states. However, systematic clinical evaluation of disease effect on drug PK and PD is not always possible because of the complexity or the cost of clinical studies. Physiologically based PK (PBPK) modeling is emerging as an alternate method to extrapolate drug PK from the healthy population to disease states. These models require information on the effect of disease condition on the activity or tissue abundance of DMET proteins. Although immunoquantification-based abundance data were available in the literature for a limited number of DMET proteins, the emergence of mass spectrometry-based quantitative proteomics as a sensitive, robust, and high-throughput tool has allowed a rapid increase in data availability on tissue DMET abundance in healthy versus disease states, especially in liver tissue. Here, we summarize these data including the available immunoquantification or mRNA levels of DMET proteins (healthy vs disease states) in extrahepatic tissue and discuss the potential applications of DMET abundance data in enhancing the capability of PBPK modeling in predicting drug disposition across disease states. Successful examples of PBPK modeling that integrate differences in DMET proteins between healthy and disease states are discussed.

摘要

疾病状态,如肝硬化和慢性肾病,可通过影响药物吸收、器官血流、血浆蛋白结合、表观分布容积和药物代谢酶和转运体(DMET)丰度,导致药物药代动力学(PK)发生改变。由于疾病状态下药物 PK 的变化,治疗指数较窄的药物尤其容易出现药物动力学(PD)不理想的情况。然而,由于临床研究的复杂性或成本,并非总是可以对疾病对药物 PK 和 PD 的影响进行系统的临床评估。基于生理学的 PK(PBPK)建模作为一种从健康人群外推药物 PK 到疾病状态的替代方法正在出现。这些模型需要有关疾病状况对 DMET 蛋白活性或组织丰度的影响的信息。尽管基于免疫定量的丰度数据在文献中可用于有限数量的 DMET 蛋白,但基于质谱的定量蛋白质组学作为一种敏感、稳健和高通量的工具的出现,使得在健康与疾病状态下组织 DMET 丰度的数据可用性迅速增加,尤其是在肝组织中。在这里,我们总结了这些数据,包括 DMET 蛋白(健康与疾病状态)在外周组织中的免疫定量或 mRNA 水平,并讨论了 DMET 丰度数据在增强 PBPK 模型预测疾病状态下药物处置能力方面的潜在应用。讨论了成功整合健康和疾病状态之间 DMET 蛋白差异的 PBPK 建模的实例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验