Hmox1(血红素加氧酶-1)通过稳定 HIF-1α(缺氧诱导因子-1α)来防止缺血介导的损伤。

Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α).

机构信息

The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.).

St Vincent's Clinical School, University of New South Wales, Sydney, Australia (L.L.D., W.C., A.A., G.J.M., R.S.).

出版信息

Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):317-330. doi: 10.1161/ATVBAHA.120.315393. Epub 2020 Nov 19.

Abstract

OBJECTIVE

Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body's response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. Approach and Results: Hmox1 deficient () mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O) recapitulated these key findings. Metabolomics analyses indicated a failure of mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in fibroblasts in response to hypoxia.

CONCLUSIONS

Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1's protection against ischemic injury independent of neovascularization.

摘要

目的

Hmox1(血红素加氧酶-1)是一种应激诱导的酶,可催化血红素降解为一氧化碳、铁和胆绿素。Hmox1 的诱导及其产物可预防心血管疾病,包括缺血性损伤。Hmox1 也是转录因子 HIF-1α(缺氧诱导因子-1α)的下游靶标,HIF-1α 是机体对缺氧反应的关键调节剂。然而,Hmox1 对抗缺血性损伤的保护机制仍有待充分理解。方法和结果:单侧后肢缺血后,Hmox1 缺陷()小鼠的血流恢复受损,伴有严重的组织坏死和自截肢。自截肢发生在血流恢复之前,来自同窝野生型小鼠的骨髓移植未能防止组织损伤和自截肢。在野生型小鼠中,缺血诱导的骨骼肌 Hmox1 表达发生在 HIF-1α 稳定之前。此外,与野生型小鼠相比, 小鼠的 HIF-1α 稳定和葡萄糖利用受损。将皮肤成纤维细胞暴露于低氧(1% O)的实验重现了这些关键发现。代谢组学分析表明, 小鼠无法适应缺血引起的细胞能量重编程。脯氨酰-4-羟化酶抑制可稳定 成纤维细胞和缺血性骨骼肌中的 HIF-1α,减少组织坏死和自截肢,并使细胞代谢恢复至野生型小鼠水平。机制研究表明,一氧化碳可稳定缺氧时 成纤维细胞中的 HIF-1α。结论:我们的研究结果表明,Hmox1 既作用于 HIF-1α 的下游,也作用于其上游,HIF-1α 的稳定有助于 Hmox1 对抗缺血性损伤,而与新生血管无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索