Xiao Yao, Zeng Bo, Berner Nicola, Frishman Dmitrij, Langosch Dieter, Teese Mark George
Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
Department of Bioinformatics, Wissenschaftszentrum, Weihenstephan, Maximus-von-Imhof-Forum 3, Freising 85354, Germany.
Comput Struct Biotechnol J. 2020 Oct 7;18:3230-3242. doi: 10.1016/j.csbj.2020.09.035. eCollection 2020.
Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data.
它们的跨膜结构域(TMDs)之间的相互作用常常支持单通道膜蛋白组装成非共价复合物。然而,TMD-TMD相互作用组在很大程度上仍未被探索。为了从一级结构预测同型TMD-TMD界面,我们对它们的物理和进化特性进行了系统分析。为此,我们生成了一个包含50个自相互作用TMDs的数据集。该数据集包含来自双拓扑人类蛋白(Ire1、Armcx6、Tie1、ATP1B1、PTPRO、PTPRU、PTPRG、DDR1和Siglec7)的9个TMDs的界面,这些界面是我们在此通过实验鉴定的,并与文献数据相结合。我们表明,这些同型TMD-TMD界面的界面残基往往比非界面残基更保守、共同进化且具有极性。此外,我们首次提出界面位置缺乏β分支残基,并且可能位于膜的疏水核心深处。界面处GxxxG基序的过度出现很强烈,但(小)xxx(小)基序的过度出现则较弱。此处揭示的这些特征的多样性和TMD-TMD界面的个体特征促使我们训练一种机器学习算法。由此产生的预测方法THOIPA(www.thoipa.org)在从进化序列数据预测关键界面残基方面表现出色。