Malik Abdul, Spezia Riccardo, Hase William L
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States.
Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4 Place Jussieu, 75005 Paris, France.
J Am Soc Mass Spectrom. 2021 Jan 6;32(1):169-179. doi: 10.1021/jasms.0c00200. Epub 2020 Nov 19.
Thermometer ions are widely used to calibrate the internal energy of the ions produced by electrospray ionization in mass spectrometry. Typically, benzylpyridinium ions with different substituents are used. More recently, benzhydrylpyridinium ions were proposed for their lower bond dissociation energies. Direct dynamics simulations using M06-2X/6-31G(d), DFTB, and PM6-D3 are performed to characterize the activation energies of two representative systems: -methylbenzylpyridinium ion (-Me-BnPy) and methyl,methylbenzhydrylpyridinium ion (Me,Me-BhPy). Simulation results are used to calculate rate constants for the two systems. These rate constants and their uncertainties are used to find the Arrhenius activation energies and RRK fitted threshold energies which give reasonable agreement with calculated bond dissociation energies at the same level of theory. There is only one fragmentation mechanism observed for both systems, which involves C-N bond dissociation via a loose transition state, to generate either benzylium or benzhydrylium ion and a neutral pyridine molecule. For -Me-BnPy using DFTB and PM6-D3 the formation of tropylium ion, from rearrangement of benzylium ion, was observed but only at higher excitation energies and for longer simulation times. These observations suggest that there is no competition between reaction pathways that could affect the reliability of internal energy calibrations. Finally, we suggest using DFTB with a modified-Arrhenius model in future studies.
温度计离子被广泛用于校准质谱中电喷雾电离产生的离子的内能。通常,使用具有不同取代基的苄基吡啶鎓离子。最近,由于二苯甲基吡啶鎓离子具有较低的键解离能,人们提出了使用它们。使用M06 - 2X/6 - 31G(d)、DFTB和PM6 - D3进行直接动力学模拟,以表征两个代表性体系的活化能:-甲基苄基吡啶鎓离子(-Me - BnPy)和甲基、甲基二苯甲基吡啶鎓离子(Me,Me - BhPy)。模拟结果用于计算这两个体系的速率常数。这些速率常数及其不确定性用于确定阿仑尼乌斯活化能和RRK拟合阈值能量,它们与在相同理论水平下计算的键解离能具有合理的一致性。对于这两个体系,仅观察到一种碎裂机制,即通过松散的过渡态进行C - N键解离,生成苄基离子或二苯甲基离子以及一个中性吡啶分子。对于 -Me - BnPy,使用DFTB和PM6 - D3时,观察到苄基离子重排形成环庚三烯正离子,但仅在较高激发能和较长模拟时间下出现。这些观察结果表明,反应途径之间不存在可能影响内能校准可靠性的竞争。最后,我们建议在未来的研究中使用带有修正阿仑尼乌斯模型的DFTB。