Suppr超能文献

基于超柔韧碳纳米管(CNW)/PDMS 仿生纳米复合材料和超疏水微柱表面的被动抗冰和主动电热除冰系统。

Passive Anti-Icing and Active Electrothermal Deicing System Based on an Ultraflexible Carbon Nanowire (CNW)/PDMS Biomimetic Nanocomposite with a Superhydrophobic Microcolumn Surface.

机构信息

College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China.

College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China.

出版信息

Langmuir. 2020 Dec 8;36(48):14483-14494. doi: 10.1021/acs.langmuir.0c01745. Epub 2020 Nov 19.

Abstract

The icephobicity property of multifunctional surfaces has been widely studied due to their potential application in the aerospace field. Herein, a controllable CNW/PDMS biomimetic nanocomposite film with a superhydrophobic surface is fabricated. The microcolumns are etched on the surface of the biomimetic nanocomposite to provide superhydrophobicity. Two defense strategies of biomimetic nanocomposites are proposed while passive anti-icing and active electrothermal deicing behaviors of the biomimetic nanocomposite are experimentally studied. It is found that the initial nucleation time of a single water droplet is delayed by 353.3 s on the superhydrophobic surface relative to the hydrophilic surface. The adhesion strength increases with the increase of surface roughness. The heating uniformity on the biomimetic nanocomposite surface was validated by infrared thermography technology. The ice layer is completely melted within 150 s under 40 V voltage captured by a noncontact infrared camera. The proposed strategy was validated by the characterization of the passive anti-icing and active electrothermal deicing property from biomimetic nanocomposites with superhydrophobic microstructure surfaces. Research results show that the two lines of defense collaborative work for an icephobicity system were able to keep biomimetic nanocomposite surfaces ice-free under test conditions.

摘要

由于多功能表面在航空航天领域的潜在应用,其冰不亲和性特性已经得到了广泛的研究。本文制备了一种具有超疏水表面的可控 CNW/PDMS 仿生纳米复合薄膜。通过在仿生纳米复合材料表面刻蚀微柱来提供超疏水性。提出了两种仿生纳米复合材料的防御策略,并对仿生纳米复合材料的被动抗冰和主动电热除冰行为进行了实验研究。结果发现,与亲水表面相比,单个液滴在超疏水表面上的初始成核时间延迟了 353.3 s。随着表面粗糙度的增加,粘附强度增加。通过红外热成像技术验证了仿生纳米复合材料表面的加热均匀性。在 40 V 电压下,用非接触式红外相机拍摄的照片显示,冰层在 150 s 内完全融化。通过具有超疏水微观结构表面的仿生纳米复合材料的被动抗冰和主动电热除冰性能的表征验证了所提出的策略。研究结果表明,两种防御策略协同工作能够使仿生纳米复合材料表面在测试条件下保持无冰状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验