Jafari Alireza, Nagheli Atabak, Foumani Ali Alavi, Soltani Bahram, Goswami Raj
Urology Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
Inflammatory Lung Disease Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
Oman Med J. 2020 Nov 12;35(6):e194. doi: 10.5001/omj.2020.78. eCollection 2020 Nov.
This review focuses on the role of gallium (Ga) nanoparticles (NPs) to enhance phagosome maturation into the -infected macrophage and the role of magnetic iron NPs as nanocarriers of antituberculosis drugs. The literature shows that silver (Ag) and zinc oxide (ZnO) NPs with dimensions less than 10 nm can penetrate directly through the macrophage bilayer membrane. Ag NPs increase the permeability membrane by motiving the aggregation of proteins in the periplasmic space and forming nano-sized pores. ZnO NPs can interact with the membrane of which leads to the formation of surface pores and the release of intracellular nucleotides. The colloidal Ag:ZnO mixture NPs with 1:1 ratio can eliminate and shows the lowest cytotoxicity effects on MCF-7 and THP-1 cell lines. Ag/ZnO nanocrystals are not able to kill alone ex-vivo. Hence, bimetallic gold (Au)/Ag NPs possessed high efficiency to inhibit in an ex-vivo THP-1 infection model. Co-delivery of mixed MeNPs into a polymeric carrier collaborated to selective uptake by macrophages through passive targeting, initial burst release of ions from the encapsulated metallic (Me) NPs, and eventually, reduction of MeNPs toxicity, and plays a pivotal role in increasing the antitubercular activity compared to use alone. In addition, Ga NPs can import drugs to the macrophage, inhibit growth, and reduce the inhibition of phagosome maturation. Magnetic encapsulated NPs exhibited good drug release properties and might be suitable as carriers of antituberculosis drugs.
本综述重点关注镓(Ga)纳米颗粒(NPs)在增强吞噬体成熟以进入被感染巨噬细胞中的作用,以及磁性铁纳米颗粒作为抗结核药物纳米载体的作用。文献表明,尺寸小于10nm的银(Ag)和氧化锌(ZnO)纳米颗粒可直接穿透巨噬细胞双层膜。银纳米颗粒通过促使周质空间中蛋白质聚集并形成纳米级孔隙来增加膜通透性。氧化锌纳米颗粒可与膜相互作用,导致表面孔隙形成和细胞内核苷酸释放。1:1比例的胶体银:氧化锌混合纳米颗粒可消除[此处原文可能缺失具体所指物],并对MCF - 7和THP - 1细胞系表现出最低的细胞毒性作用。银/氧化锌纳米晶体在体外不能单独杀死[此处原文可能缺失具体所指物]。因此,双金属金(Au)/银纳米颗粒在体外THP - 1感染模型中具有高效抑制[此处原文可能缺失具体所指物]的能力。将混合的金属纳米颗粒共同递送至聚合物载体中,通过被动靶向、从包裹的金属(Me)纳米颗粒中初始爆发释放离子以及最终降低金属纳米颗粒的毒性,协同促进巨噬细胞的选择性摄取,与单独使用相比,在增强抗结核活性方面发挥关键作用。此外,镓纳米颗粒可将药物导入巨噬细胞,抑制[此处原文可能缺失具体所指物]生长,并减少对吞噬体成熟的抑制。磁性包裹的纳米颗粒表现出良好的药物释放特性,可能适合作为抗结核药物的载体。