West German Proton Therapy Centre Essen WPE, Essen, Germany.
Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.
Med Phys. 2021 Jan;48(1):456-476. doi: 10.1002/mp.14598. Epub 2020 Dec 10.
PENH is a recently coded module for simulation of proton transport in conjunction with the Monte Carlo code PENELOPE. PENELOPE applies class II simulation to all type of interactions, in particular, to elastic collisions. PENH uses calculated differential cross sections for proton elastic collisions that include electron screening effects as well as nuclear structure effects. Proton-induced nuclear reactions are simulated from information in the ENDF-6 database or from alternative nuclear databases in ENDF format. The purpose of this work is to benchmark this module by simulating absorbed dose distributions from a single finite spot size proton pencil beam in water.
Monte Carlo simulations with PENH are compared with simulation results from TOPAS Monte Carlo (v3.1p2) and RayStation Monte Carlo (v6). Different beam models are examined in terms of mean energy and energy spread to match the measured profiles. The phase-space file is derived from experimental measurements. Simulated absorbed dose distributions are compared to experimental data obtained with the ionization chamber array MatriXX 2D detector (IBA Dosimetry) in a water tank. The experiments were conducted with a clinical IBA pencil beam scanning dedicated nozzle. In all simulations a Fermi-Eyges phase-space representation of a single finite spot size proton pencil beam is used.
In general, there is a good agreement between simulated results and experimental data up to a distance of 3 cm from the central axis. In the core region (region where the dose is more than 10% of the maximum dose) PENH shows, overall, the smallest deviations from experimental data, with the largest radial rms (root mean square) smaller than 0.2. The results achieved by TOPAS and RayStation in that region are very close to those of PENH. For the halo region, that is the area of the dose distribution outside the core region reaching down to 0.01% of the maximum intensity, the largest rms achieved by TOPAS is always smaller than 0.5, yielding better results than the rest of the codes.
The physics modeling of the PENELOPE/PENH code yields results consistent with measurements in the dose range relevant for proton therapy. The discrepancies between PENH appearing at distances larger than 3 cm from the central-beam axis are accountable to the lack of neutron simulation in this code. In contradistinction, TOPAS has a better agreement with experimental data at large distances from the central-beam axis because of the simulation of neutrons.
PENH 是一个最近编写的模块,用于结合蒙特卡罗代码 PENELOPE 模拟质子传输。PENELOPE 对所有类型的相互作用应用二级模拟,特别是弹性碰撞。PENH 使用包括电子屏蔽效应和核结构效应在内的质子弹性碰撞的计算微分截面。质子诱导的核反应是根据 ENDF-6 数据库中的信息或 ENDF 格式的替代核数据库进行模拟的。这项工作的目的是通过模拟水中单个有限光斑质子铅笔束的吸收剂量分布来对该模块进行基准测试。
将 PENH 的蒙特卡罗模拟结果与 TOPAS 蒙特卡罗(v3.1p2)和 RayStation 蒙特卡罗(v6)的模拟结果进行比较。根据测量的轮廓,检查了不同的束模型的平均能量和能量分布,以匹配测量的轮廓。相空间文件是根据实验测量得出的。将模拟的吸收剂量分布与在水箱中使用 IBA 剂量学的电离室阵列 MatriXX 2D 探测器(MatriXX 2D 探测器)获得的实验数据进行比较。该实验是使用临床 IBA 铅笔束扫描专用喷嘴进行的。在所有模拟中,均使用单个有限光斑质子铅笔束的 Fermi-Eyges 相空间表示。
一般来说,从中央轴 3 厘米的距离开始,模拟结果与实验数据之间存在很好的一致性。在核心区域(剂量超过最大剂量的 10%的区域),PENH 显示总体上与实验数据的偏差最小,最大径向均方根(均方根)小于 0.2。该区域的 TOPAS 和 RayStation 获得的结果非常接近 PENH。对于晕区,即核心区域以外的剂量分布区域,其剂量降至最大强度的 0.01%,TOPAS 获得的最大均方根始终小于 0.5,优于其他代码。
PENELOPE/PENH 代码的物理建模产生的结果与质子治疗相关剂量范围内的测量结果一致。在距离中央束轴 3 厘米以上的距离处出现的 PENH 差异归因于该代码中没有模拟中子。相比之下,由于模拟了中子,TOPAS 在距离中央束轴较远的位置与实验数据的一致性更好。