Suppr超能文献

FMixCutMatch 用于半监督深度学习。

FMixCutMatch for semi-supervised deep learning.

机构信息

School of Software Engineering Beijing Jiaotong University Beijing, China.

School of Software Engineering Beijing Jiaotong University Beijing, China.

出版信息

Neural Netw. 2021 Jan;133:166-176. doi: 10.1016/j.neunet.2020.10.018. Epub 2020 Nov 10.

Abstract

Mixed sample augmentation (MSA) has witnessed great success in the research area of semi-supervised learning (SSL) and is performed by mixing two training samples as an augmentation strategy to effectively smooth the training space. Following the insights on the efficacy of cut-mix in particular, we propose FMixCut, an MSA that combines Fourier space-based data mixing (FMix) and the proposed Fourier space-based data cutting (FCut) for labeled and unlabeled data augmentation. Specifically, for the SSL task, our approach first generates soft pseudo-labels using the model's previous predictions. The model is then trained to penalize the outputs of the FMix-generated samples so that they are consistent with their mixed soft pseudo-labels. In addition, we propose to use FCut, a new Cutout-based data augmentation strategy that adopts the two masked sample pairs from FMix for weighted cross-entropy minimization. Furthermore, by implementing two regularization techniques, namely, batch label distribution entropy maximization and sample confidence entropy minimization, we further boost the training efficiency. Finally, we introduce a dynamic labeled-unlabeled data mixing (DDM) strategy to further accelerate the convergence of the model. Combining the above process, we finally call our SSL approach as "FMixCutMatch", in short FMCmatch. As a result, the proposed FMCmatch achieves state-of-the-art performance on CIFAR-10/100, SVHN and Mini-Imagenet across a variety of SSL conditions with the CNN-13, WRN-28-2 and ResNet-18 networks. In particular, our method achieves a 4.54% test error on CIFAR-10 with 4K labels under the CNN-13 and a 41.25% Top-1 test error on Mini-Imagenet with 10K labels under the ResNet-18. Our codes for reproducing these results are publicly available at https://github.com/biuyq/FMixCutMatch.

摘要

混合样本增强(MSA)在半监督学习(SSL)研究领域取得了巨大成功,它通过混合两个训练样本作为增强策略,有效地平滑训练空间。基于对 Cut-Mix 有效性的深入了解,我们提出了 FMixCut,这是一种将基于傅里叶空间的数据混合(FMix)和我们提出的基于傅里叶空间的数据切割(FCut)相结合的 MSA,用于标记和未标记数据的增强。具体来说,对于 SSL 任务,我们的方法首先使用模型之前的预测生成软伪标签。然后,我们使用模型来惩罚 FMix 生成的样本的输出,以使它们与混合后的软伪标签一致。此外,我们提出使用 FCut,这是一种新的基于 Cutout 的数据增强策略,它采用 FMix 中的两个掩蔽样本对进行加权交叉熵最小化。此外,通过实施两种正则化技术,即批量标签分布熵最大化和样本置信熵最小化,我们进一步提高了训练效率。最后,我们引入了一种动态的标记-未标记数据混合(DDM)策略,以进一步加速模型的收敛。结合上述过程,我们最终将我们的 SSL 方法称为“FMixCutMatch”,简称 FMCmatch。结果表明,在所提出的 FMCmatch 方法中,在各种 SSL 条件下,使用 CNN-13、WRN-28-2 和 ResNet-18 网络,在 CIFAR-10/100、SVHN 和 Mini-Imagenet 上实现了最先进的性能。特别是,在 CNN-13 下使用 4K 个标签时,我们的方法在 CIFAR-10 上的测试错误率为 4.54%,在 ResNet-18 下使用 10K 个标签时,在 Mini-Imagenet 上的 Top-1 测试错误率为 41.25%。我们重现这些结果的代码可在 https://github.com/biuyq/FMixCutMatch 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验