Suppr超能文献

关于一个规范衍射积分的渐近性质。

On the asymptotic properties of a canonical diffraction integral.

作者信息

Assier Raphaël C, Abrahams I David

机构信息

Department of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Isaac Newton Institute, University of Cambridge, 20 Clarkson Road, Cambridge CB3 0EH, UK.

出版信息

Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200150. doi: 10.1098/rspa.2020.0150. Epub 2020 Oct 14.

Abstract

We introduce and study a new canonical integral, denoted , depending on two complex parameters and . It arises from the problem of wave diffraction by a quarter-plane and is heuristically constructed to capture the complex field near the tip and edges. We establish some region of analyticity of this integral in , and derive its rich asymptotic behaviour as | | and | | tend to infinity. We also study the decay properties of the function obtained from applying a specific double Cauchy integral operator to this integral. These results allow us to show that this integral shares all of the asymptotic properties expected from the key unknown function arising when the quarter-plane diffraction problem is studied via a two-complex-variables Wiener-Hopf technique (see Assier & Abrahams, , in press). As a result, the integral can be used to mimic the unknown function and to build an efficient 'educated' approximation to the quarter-plane problem.

摘要

我们引入并研究一种新的规范积分,记为 ,它依赖于两个复参数 和 。它源自四分之一平面的波衍射问题,并且是通过启发式构造来捕捉尖端和边缘附近的复场。我们在 中建立了这个积分的一些解析区域,并推导了当 和 趋于无穷时它丰富的渐近行为。我们还研究了对这个积分应用特定的双柯西积分算子所得到的函数的衰减性质。这些结果使我们能够表明,这个积分具有通过双复变量维纳 - 霍普夫技术研究四分之一平面衍射问题时关键未知函数 所预期的所有渐近性质(见阿西耶与亚伯拉罕斯,即将发表)。因此,积分 可用于模拟未知函数 并为四分之一平面问题构建一个有效的“有根据的”近似。

相似文献

1
On the asymptotic properties of a canonical diffraction integral.
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200150. doi: 10.1098/rspa.2020.0150. Epub 2020 Oct 14.
2
Scattering on a square lattice from a crack with a damage zone.
Proc Math Phys Eng Sci. 2020 Mar;476(2235):20190686. doi: 10.1098/rspa.2019.0686. Epub 2020 Mar 18.
3
Acoustic diffraction by a half-plane in a viscous fluid medium.
J Acoust Soc Am. 2002 Oct;112(4):1288-96. doi: 10.1121/1.1502894.
5
Asymptotic profile in selection-mutation equations: Gauss versus Cauchy distributions.
J Math Anal Appl. 2016 Dec 15;444(2):1515-1541. doi: 10.1016/j.jmaa.2016.07.028. Epub 2016 Jul 22.
6
The generalized Wiener-Hopf equations for the elastic wave motion in angular regions.
Proc Math Phys Eng Sci. 2022 Jan;478(2257):20210624. doi: 10.1098/rspa.2021.0624. Epub 2022 Jan 12.
7
On the Wiener-Hopf solution of water-wave interaction with a submerged elastic or poroelastic plate.
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200360. doi: 10.1098/rspa.2020.0360. Epub 2020 Oct 28.
8
Diffraction by a half-plane: a generalization of the Fresnel diffraction theory.
Opt Lett. 1991 Jul 15;16(14):1060-1. doi: 10.1364/ol.16.001060.
9
Solving conical diffraction grating problems with integral equations.
J Opt Soc Am A Opt Image Sci Vis. 2010 Mar 1;27(3):585-97. doi: 10.1364/JOSAA.27.000585.
10
Kramers problem: numerical Wiener-Hopf-like model characteristics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056703. doi: 10.1103/PhysRevE.82.056703. Epub 2010 Nov 3.

引用本文的文献

1
The Wiener-Hopf technique, its generalizations and applications: constructive and approximate methods.
Proc Math Phys Eng Sci. 2021 Oct;477(2254):20210533. doi: 10.1098/rspa.2021.0533. Epub 2021 Oct 20.
2
Analytical continuation of two-dimensional wave fields.
Proc Math Phys Eng Sci. 2021 Jan;477(2245):20200681. doi: 10.1098/rspa.2020.0681. Epub 2021 Jan 6.

本文引用的文献

1
Geometrical theory of diffraction.
J Opt Soc Am. 1962 Feb;52:116-30. doi: 10.1364/josa.52.000116.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验