Suppr超能文献

双filin 绕过组装条件和肌动蛋白丝老化来驱动带刺末端解聚。

Twinfilin bypasses assembly conditions and actin filament aging to drive barbed end depolymerization.

机构信息

Department of Biology, Brandeis University, Waltham, MA.

Department of Biochemistry, Brandeis University, Waltham, MA.

出版信息

J Cell Biol. 2021 Jan 4;220(1). doi: 10.1083/jcb.202006022.

Abstract

Cellular actin networks grow by ATP-actin addition at filament barbed ends and have long been presumed to depolymerize at their pointed ends, primarily after filaments undergo "aging" (ATP hydrolysis and Pi release). The cytosol contains high levels of actin monomers, which favors assembly over disassembly, and barbed ends are enriched in ADP-Pi actin. For these reasons, the potential for a barbed end depolymerization mechanism in cells has received little attention. Here, using microfluidics-assisted TIRF microscopy, we show that mouse twinfilin, a member of the ADF-homology family, induces depolymerization of ADP-Pi barbed ends even under assembly-promoting conditions. Indeed, we observe in single reactions containing micromolar concentrations of actin monomers the simultaneous rapid elongation of formin-bound barbed ends and twinfilin-induced depolymerization of free barbed ends. The data show that twinfilin catalyzes dissociation of subunits from ADP-Pi barbed ends and thereby bypasses filament aging prerequisites to disassemble newly polymerized actin filaments.

摘要

细胞肌动蛋白网络通过在丝状纤维的突端添加 ATP-肌动蛋白而生长,并且长期以来一直被认为在其尖端解聚,主要是在纤维经历“老化”(ATP 水解和 Pi 释放)之后。细胞质中含有高水平的肌动蛋白单体,这有利于组装而不是解聚,并且突端富含 ADP-Pi 肌动蛋白。由于这些原因,细胞中突端解聚机制的潜力很少受到关注。在这里,我们使用微流控辅助的全内反射荧光显微镜(TIRF microscopy)表明,小鼠双微管蛋白(twinfilin),一种 ADF 同源家族的成员,即使在促进组装的条件下,也能诱导 ADP-Pi 突端的解聚。实际上,我们在含有微摩尔浓度肌动蛋白单体的单个反应中观察到,formin 结合的突端的快速伸长与 twinfilin 诱导的游离突端的解聚同时发生。数据表明,twinfilin 催化从 ADP-Pi 突端解离亚基,从而绕过了组装新聚合肌动蛋白丝的老化前提条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9719/7686915/3ff6847089f9/JCB_202006022_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验