Back Michele, Casagrande Elisa, Trave Enrico, Cristofori Davide, Ambrosi Emmanuele, Dallo Federico, Roman Marco, Ueda Jumpei, Xu Jian, Tanabe Setsuhisa, Benedetti Alvise, Riello Pietro
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venice-Mestre 30172, Italy.
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):55195-55204. doi: 10.1021/acsami.0c17897. Epub 2020 Nov 23.
Bismuth-based (nano)materials have been attracting increasing interest due to appealing properties such as high refractive indexes, intrinsic opacity, and structural distortions due to the stereochemistry of 6s lone pair electrons of Bi. However, the control over specific phases and strategies able to stabilize uniform bismuth-based (nano)materials is still a challenge. In this study, we employed the ability of bismuth to lower the melting point of silica to introduce a new synthetic approach able to confine the growth of bismuth-oxide-based materials into nanostructures. Combining in situ temperature-dependent synchrotron radiation X-ray powder diffraction (XRPD) with high-resolution transmission electron microscopy (HR-TEM) analyses, we demonstrate the evolution of a confined BiO-SiO nanosystem from BiSiO to BiSiO through a melting process. The silica shell acts as both a nanoreactor and a silicon source for the stabilization of bismuth silicate glass-ceramic nanocrystals keeping the original spherical shape. The exciton peak of BiSiO is measured for the first time allowing the estimation of its real energy gap. Moreover, based on a detailed spectroscopic investigation, we discuss the potential and the limitations of Nd-activated bismuth silicate systems as ratiometric thermometers. The synthetic strategy introduced here could be further explored to stabilize other bismuth-oxide-based materials, opening the way toward the growth of well-defined glass-ceramic nanoparticles.
基于铋的(纳米)材料因其具有诸如高折射率、固有不透明度以及由于铋的6s孤对电子的立体化学导致的结构畸变等吸引人的特性而越来越受到关注。然而,对特定相的控制以及能够稳定均匀的基于铋的(纳米)材料的策略仍然是一个挑战。在本研究中,我们利用铋降低二氧化硅熔点的能力引入了一种新的合成方法,该方法能够将基于铋氧化物的材料的生长限制在纳米结构中。结合原位温度依赖同步辐射X射线粉末衍射(XRPD)和高分辨率透射电子显微镜(HR-TEM)分析,我们证明了一个受限的BiO-SiO纳米系统通过熔化过程从BiSiO演变为BiSiO。二氧化硅壳既作为纳米反应器又作为硅源,用于稳定保持原始球形的硅酸铋玻璃陶瓷纳米晶体。首次测量了BiSiO的激子峰,从而能够估计其实际能隙。此外,基于详细的光谱研究,我们讨论了钕激活的硅酸铋系统作为比率温度计的潜力和局限性。这里介绍的合成策略可以进一步探索以稳定其他基于铋氧化物的材料,为生长明确的玻璃陶瓷纳米颗粒开辟道路。