Suppr超能文献

通过循环一致生成式机器学习提高兆伏级计算机断层扫描(MVCT)的对比度和噪声。

Improved contrast and noise of megavoltage computed tomography (MVCT) through cycle-consistent generative machine learning.

机构信息

Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA.

Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.

出版信息

Med Phys. 2021 Feb;48(2):676-690. doi: 10.1002/mp.14616. Epub 2020 Dec 27.

Abstract

PURPOSE

Megavoltage computed tomography (MVCT) has been implemented on many radiation therapy treatment machines as a tomographic imaging modality that allows for three-dimensional visualization and localization of patient anatomy. Yet MVCT images exhibit lower contrast and greater noise than its kilovoltage CT (kVCT) counterpart. In this work, we sought to improve these disadvantages of MVCT images through an image-to-image-based machine learning transformation of MVCT and kVCT images. We demonstrated that by learning the style of kVCT images, MVCT images can be converted into high-quality synthetic kVCT (skVCT) images with higher contrast and lower noise, when compared to the original MVCT.

METHODS

Kilovoltage CT and MVCT images of 120 head and neck (H&N) cancer patients treated on an Accuray TomoHD system were retrospectively analyzed in this study. A cycle-consistent generative adversarial network (CycleGAN) machine learning, a variant of the generative adversarial network (GAN), was used to learn Hounsfield Unit (HU) transformations from MVCT to kVCT images, creating skVCT images. A formal mathematical proof is given describing the interplay between function sensitivity and input noise and how it applies to the error variance of a high-capacity function trained with noisy input data. Finally, we show how skVCT shares distributional similarity to kVCT for various macro-structures found in the body.

RESULTS

Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were improved in skVCT images relative to the original MVCT images and were consistent with kVCT images. Specifically, skVCT CNR for muscle-fat, bone-fat, and bone-muscle improved to 14.8 ± 0.4, 122.7 ± 22.6, and 107.9 ± 22.4 compared with 1.6 ± 0.3, 7.6 ± 1.9, and 6.0 ± 1.7, respectively, in the original MVCT images and was more consistent with kVCT CNR values of 15.2 ± 0.8, 124.9 ± 27.0, and 109.7 ± 26.5, respectively. Noise was significantly reduced in skVCT images with SNR values improving by roughly an order of magnitude and consistent with kVCT SNR values. Axial slice mean (S-ME) and mean absolute error (S-MAE) agreement between kVCT and MVCT/skVCT improved, on average, from -16.0 and 109.1 HU to 8.4 and 76.9 HU, respectively.

CONCLUSIONS

A kVCT-like qualitative aid was generated from input MVCT data through a CycleGAN instance. This qualitative aid, skVCT, was robust toward embedded metallic material, dramatically improves HU alignment from MVCT, and appears perceptually similar to kVCT with SNR and CNR values equivalent to that of kVCT images.

摘要

目的

千伏级计算机断层扫描(kVCT)已在许多放射治疗设备上实现,作为一种层析成像方式,可实现患者解剖结构的三维可视化和定位。然而,MVCT 图像的对比度和噪声比其千伏级 CT(kVCT)图像低。在这项工作中,我们试图通过基于图像的机器学习来转换 MVCT 和 kVCT 图像来改善 MVCT 图像的这些缺点。我们证明,通过学习 kVCT 图像的风格,MVCT 图像可以转换为高质量的合成 kVCT(skVCT)图像,与原始 MVCT 相比,具有更高的对比度和更低的噪声。

方法

本研究回顾性分析了 120 例接受 Accuray TomoHD 系统治疗的头颈部(H&N)癌症患者的 MVCT 和 kVCT 图像。使用循环一致生成对抗网络(CycleGAN)机器学习,即生成对抗网络(GAN)的变体,从 MVCT 到 kVCT 图像学习 Hounsfield Unit(HU)转换,创建 skVCT 图像。本文给出了一个正式的数学证明,描述了函数灵敏度和输入噪声之间的相互作用,以及它如何应用于用噪声输入数据训练的大容量函数的误差方差。最后,我们展示了 skVCT 如何与体内各种宏观结构的 kVCT 共享分布相似性。

结果

skVCT 图像的信噪比(SNR)和对比噪声比(CNR)相对于原始 MVCT 图像得到了提高,并且与 kVCT 图像一致。具体而言,与原始 MVCT 图像中的 1.6±0.3、7.6±1.9 和 6.0±1.7 相比,肌肉脂肪、骨脂肪和骨肌肉的 skVCT CNR 分别提高到 14.8±0.4、122.7±22.6 和 107.9±22.4,与 kVCT CNR 值 15.2±0.8、124.9±27.0 和 109.7±26.5 更一致。skVCT 图像的噪声显著降低,信噪比提高了约一个数量级,与 kVCT 的 SNR 值一致。kVCT 和 MVCT/skVCT 之间的轴向切片均值(S-ME)和平均绝对误差(S-MAE)的一致性平均从-16.0 和 109.1 HU 提高到 8.4 和 76.9 HU。

结论

通过 CycleGAN 实例从输入的 MVCT 数据生成了类似 kVCT 的定性辅助工具。这种定性辅助工具 skVCT 对嵌入的金属材料具有鲁棒性,极大地改善了 MVCT 的 HU 对齐,并且与 kVCT 相比在感知上相似,具有与 kVCT 图像相当的 SNR 和 CNR 值。

相似文献

7
10
Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221085358. doi: 10.1177/15330338221085358.

引用本文的文献

1
Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses.
J Appl Clin Med Phys. 2023 Aug;24(8):e14004. doi: 10.1002/acm2.14004. Epub 2023 Apr 24.
2
A novel approach for eliminating metal artifacts based on MVCBCT and CycleGAN.
Front Oncol. 2022 Nov 10;12:1024160. doi: 10.3389/fonc.2022.1024160. eCollection 2022.

本文引用的文献

1
Attention-Aware Discrimination for MR-to-CT Image Translation Using Cycle-Consistent Generative Adversarial Networks.
Radiol Artif Intell. 2020 Mar 25;2(2):e190027. doi: 10.1148/ryai.2020190027. eCollection 2020 Mar.
2
Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:2422-2431. doi: 10.1109/cvpr.2019.00253. Epub 2020 Jan 9.
3
Visual enhancement of Cone-beam CT by use of CycleGAN.
Med Phys. 2020 Mar;47(3):998-1010. doi: 10.1002/mp.13963. Epub 2020 Jan 3.
5
A Megavoltage CT Image Enhancement Method for Image-Guided and Adaptive Helical TomoTherapy.
Front Oncol. 2019 May 10;9:362. doi: 10.3389/fonc.2019.00362. eCollection 2019.
8
Attention gated networks: Learning to leverage salient regions in medical images.
Med Image Anal. 2019 Apr;53:197-207. doi: 10.1016/j.media.2019.01.012. Epub 2019 Feb 5.
9
DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks.
Phys Med Biol. 2018 Dec 4;63(23):235022. doi: 10.1088/1361-6560/aaef74.
10
A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1074-1082. doi: 10.1016/j.ijrobp.2018.08.032. Epub 2018 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验