Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States.
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
J Org Chem. 2021 Jan 1;86(1):254-263. doi: 10.1021/acs.joc.0c02051. Epub 2020 Nov 25.
Understanding the degradation mechanisms of organic cations under basic conditions is extremely important for the development of durable alkaline energy conversion devices. Cations are key functional groups in alkaline anion exchange membranes (AAEMs), and AAEMs are critical components to conduct hydroxide anions in alkaline fuel cells. Previously, we have established a standard protocol to evaluate cation alkaline stability within KOH/CDOH solution at 80 °C. Herein, we are using the protocol to compare 26 model compounds, including benzylammonium, tetraalkylammonium, spirocyclicammonium, imidazolium, benzimidazolium, triazolium, pyridinium, guanidinium, and phosphonium cations. The goal is not only to evaluate their degradation rate, but also to identify their degradation pathways and lead to the advancement of cations with improved alkaline stabilities.
了解有机阳离子在碱性条件下的降解机制对于开发耐用的碱性能量转换设备至关重要。阳离子是碱性阴离子交换膜(AAEMs)的关键功能基团,AAEMs 是在碱性燃料电池中传导氢氧根阴离子的关键组件。在此之前,我们已经建立了一种标准协议,用于在 80°C 的 KOH/CDOH 溶液中评估阳离子的碱性稳定性。在此,我们使用该协议比较了 26 种模型化合物,包括苄基铵、四烷基铵、螺环铵、咪唑鎓、苯并咪唑鎓、三唑鎓、吡啶鎓、胍鎓和磷鎓阳离子。其目的不仅是评估它们的降解速率,还确定它们的降解途径,从而开发出具有更好碱性稳定性的阳离子。