Pakhira Santanu, Kundu Mily, Ranganathan R, Mazumdar Chandan
Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India.
Ames Laboratory, Ames, Iowa 50011, United States of America.
J Phys Condens Matter. 2020 Mar 3;33(9):095804. doi: 10.1088/1361-648X/abcdb2.
A comparative study has been carried out on the magnetocaloric properties of as-cast and annealed TbNiSi intermetallic compound. While the as-cast material exhibits ferromagnetic cluster-glass behaviour below 9.9 K coexisting with antiferromagnetic (AFM) interaction, the annealed system shows AFM ordering below 13.5 K and spin freezing occurs below 4 K. The compound exhibits moderate magnetocaloric performance with maximum isothermal entropy changes (-ΔS ) 8.8 and 10.9 J kg K, relative cooling power (RCP) 306 and 365 J kg, along with adiabatic temperature change (ΔT ) 5.5 and 8.15 K for 70 kOe magnetic field change in as-cast and annealed forms, respectively. The estimated magnetic entropy change is found to be larger for annealed sample in comparison to that of as-cast analogue. However, the full width at half maxima (FWHM) of -ΔS (T) behaviour is larger in as-cast compound due to the presence of inherent structural disorder which reduces with thermal annealing. A positive isothermal entropy change (-ΔS ) and adiabatic temperature change (ΔT ) is observed for the as-cast compound in the measured field and temperature region. In contrast, the annealed system exhibits inverse magnetocaloric effect in the low field and temperature region where AFM interactions dominate. Magnetocaloric effect (MCE) is used as a tool to establish a subtle correlation between the observed magnetocaloric effect and the reported magnetic properties of the system.
对铸态和退火态的TbNiSi金属间化合物的磁热性能进行了比较研究。铸态材料在9.9 K以下表现出铁磁团簇玻璃行为,并与反铁磁(AFM)相互作用共存,而退火态体系在13.5 K以下表现出AFM有序,在4 K以下发生自旋冻结。该化合物表现出适度的磁热性能,铸态和退火态在70 kOe磁场变化下的最大等温熵变(-ΔS)分别为8.8和10.9 J kg⁻¹ K⁻¹,相对制冷量(RCP)分别为306和365 J kg⁻¹,绝热温度变化(ΔT)分别为5.5和8.15 K。发现退火样品的估计磁熵变比铸态类似物的更大。然而,由于存在固有结构无序,铸态化合物中-ΔS(T)行为的半高宽(FWHM)更大,这种无序会随着热退火而减少。在测量的场和温度区域内,铸态化合物观察到正的等温熵变(-ΔS)和绝热温度变化(ΔT)。相比之下,退火态体系在AFM相互作用占主导的低场和温度区域表现出逆磁热效应。磁热效应(MCE)被用作一种工具,以建立观察到的磁热效应与该体系报道的磁性能之间的微妙关联。