Department of Human Development and Family Science, Oklahoma State University, USA.
Department of Human Development and Family Science, Oklahoma State University, USA.
J Adolesc. 2020 Dec;85:135-147. doi: 10.1016/j.adolescence.2020.11.001. Epub 2020 Nov 23.
Valid causal inferences are necessary to use developmental research to improve adolescent outcomes. What type of change should be analyzed to approximate causal inferences from longitudinal data? Difference-score and ANCOVA-type analyses often produce contradictory results, a problem known as Lord's paradox. This study investigates 2-group, 2-wave difference-score analyses and ANCOVA, and introduces a method that produces consistent results, namely dual-centered ANCOVA, which is compared to pretest matching.
These methods are tested first on two datasets simulated to fit each of Lord's contrasting results. The methods are then applied to data investigating the longitudinal associations of parent-adolescent discussions about sexual risks on subsequent unprotected sexual behaviors in 4753 American adolescents (62.2% whites).
The results replicate Lord's contradictory results for all datasets. Dual-centered ANCOVA and pretest matching both produce consistent results, but dual-centered ANCOVA replicates the original results for difference-score analyses, whereas pretest matching replicates the original ANCOVA results. Thus, the two sets of consistent results differ from each other as much as the original discrepancy rather than reducing bias.
The least biased analysis is the one whose null hypothesis best approximates a plausible change pattern to represent a no-treatment effect. When difference-score analyses are thought to approximate valid causal inferences as closely as ANCOVA-type analyses, dual-centered ANCOVA estimates the difference-score effect while retaining the advantages of ANCOVA in statistical power and covariate inclusion. These findings are widely applicable to longitudinal analyses that incorporate one or both of these basic methods to analyze change.
为了利用发展研究改善青少年的结果,必须进行有效的因果推断。为了近似从纵向数据中进行因果推断,应该分析哪种类型的变化?差值评分和协方差分析(ANCOVA)类型的分析经常会产生相互矛盾的结果,这是一个被称为 Lord 悖论的问题。本研究调查了 2 组、2 波差值评分分析和 ANCOVA,并介绍了一种产生一致结果的方法,即双中心 ANCOVA,与前测匹配进行了比较。
这些方法首先在两个数据集上进行测试,这些数据集被模拟以适应 Lord 相反结果的每一个。然后,将这些方法应用于研究父母与青少年讨论性风险与随后 4753 名美国青少年(62.2%为白人)未采取保护措施的性行为之间纵向关联的数据分析中。
所有数据集都复制了 Lord 的矛盾结果。双中心 ANCOVA 和前测匹配都产生了一致的结果,但双中心 ANCOVA 复制了差值评分分析的原始结果,而前测匹配复制了原始 ANCOVA 结果。因此,这两组一致的结果与原始差异一样大,而不是减少偏差。
最无偏的分析是其零假设最接近合理变化模式以代表无处理效应的分析。当差值评分分析被认为与协方差分析类型的分析一样接近有效因果推断时,双中心 ANCOVA 估计差值评分效应,同时保留协方差分析在统计功效和协变量纳入方面的优势。这些发现广泛适用于纵向分析,这些分析采用了这两种基本方法中的一种或两种来分析变化。