Suppr超能文献

使用 MRI 放射组学无创检测低级别胶质瘤的 和 1p19q 状态:系统评价。

Noninvasive Determination of and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review.

机构信息

From the Department of Anatomy (A.P.B.)

Townsville University Hospital (A.P.B., J.K.), Douglas, Queensland, Australia.

出版信息

AJNR Am J Neuroradiol. 2021 Jan;42(1):94-101. doi: 10.3174/ajnr.A6875. Epub 2020 Nov 26.

Abstract

BACKGROUND

Determination of () status and, if -mutant, assessing 1p19q codeletion are an important component of diagnosis of World Health Organization grades II/III or lower-grade gliomas. This has led to research into noninvasively correlating imaging features ("radiomics") with genetic status.

PURPOSE

Our aim was to perform a diagnostic test accuracy systematic review for classifying and 1p19q status using MR imaging radiomics, to provide future directions for integration into clinical radiology.

DATA SOURCES

Ovid (MEDLINE), Scopus, and the Web of Science were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Diagnostic Test Accuracy guidelines.

STUDY SELECTION

Fourteen journal articles were selected that included 1655 lower-grade gliomas classified by their and/or 1p19q status from MR imaging radiomic features.

DATA ANALYSIS

For each article, the classification of and/or 1p19q status using MR imaging radiomics was evaluated using the area under curve or descriptive statistics. Quality assessment was performed with the Quality Assessment of Diagnostic Accuracy Studies 2 tool and the radiomics quality score.

DATA SYNTHESIS

The best classifier of status was with conventional radiomics in combination with convolutional neural network-derived features (area under the curve  = 0.95, 94.4% sensitivity, 86.7% specificity). Optimal classification of 1p19q status occurred with texture-based radiomics (area under the curve  = 0.96, 90% sensitivity, 89% specificity).

LIMITATIONS

A meta-analysis showed high heterogeneity due to the uniqueness of radiomic pipelines.

CONCLUSIONS

Radiogenomics is a potential alternative to standard invasive biopsy techniques for determination of and 1p19q status in lower-grade gliomas but requires translational research for clinical uptake.

摘要

背景

确定 () 状态,如果是 - 突变,评估 1p19q 缺失是世界卫生组织 (WHO) 分级 II/III 或低级别胶质瘤诊断的重要组成部分。这导致了对非侵入性地将影像学特征(“放射组学”)与遗传状态相关联的研究。

目的

我们旨在进行一项使用磁共振成像放射组学分类和 1p19q 状态的诊断测试准确性系统评价,为将来整合到临床放射学提供方向。

数据来源

根据诊断测试准确性系统评价和荟萃分析的首选报告项目,在 Ovid (MEDLINE)、Scopus 和 Web of Science 中进行了搜索。

研究选择

选择了 14 篇期刊文章,其中包括 1655 例通过磁共振成像放射组学特征分类的和/或 1p19q 状态的低级别胶质瘤。

数据分析

对于每篇文章,使用磁共振成像放射组学对和/或 1p19q 状态的分类使用曲线下面积或描述性统计进行评估。使用质量评估诊断准确性研究 2 工具和放射组学质量评分进行质量评估。

数据综合

状态的最佳分类器是传统放射组学与卷积神经网络衍生特征相结合(曲线下面积 = 0.95,94.4%敏感性,86.7%特异性)。1p19q 状态的最佳分类是基于纹理的放射组学(曲线下面积 = 0.96,90%敏感性,89%特异性)。

局限性

由于放射组学管道的独特性,荟萃分析显示存在高度异质性。

结论

放射基因组学是确定低级别胶质瘤和 1p19q 状态的标准侵入性活检技术的潜在替代方法,但需要进行转化研究以实现临床应用。

相似文献

1
Noninvasive Determination of and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review.
AJNR Am J Neuroradiol. 2021 Jan;42(1):94-101. doi: 10.3174/ajnr.A6875. Epub 2020 Nov 26.
3
Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas.
J Neurooncol. 2017 Aug;134(1):177-188. doi: 10.1007/s11060-017-2506-9. Epub 2017 May 25.
10
Molecular genetics of adult grade II gliomas: towards a comprehensive tumor classification system.
J Neurooncol. 2012 Nov;110(2):205-13. doi: 10.1007/s11060-012-0953-x. Epub 2012 Aug 14.

引用本文的文献

1
Research progress in glioma-related epilepsy (Review).
Biomed Rep. 2025 Aug 19;23(4):167. doi: 10.3892/br.2025.2045. eCollection 2025 Oct.
8
Artificial intelligence in neuro-oncology.
Front Neurosci. 2023 Dec 14;17:1217629. doi: 10.3389/fnins.2023.1217629. eCollection 2023.
10
Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution P MR Spectroscopic Imaging at 7.0 T.
Radiol Imaging Cancer. 2024 Jan;6(1):e220127. doi: 10.1148/rycan.220127.

本文引用的文献

1
Attitudes of Patients and Their Relatives Toward Artificial Intelligence in Neurosurgery.
World Neurosurg. 2020 Jun;138:e627-e633. doi: 10.1016/j.wneu.2020.03.029. Epub 2020 Mar 14.
4
Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis.
Eur Radiol. 2020 Jun;30(6):3558-3566. doi: 10.1007/s00330-020-06666-3. Epub 2020 Feb 14.
5
Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades.
J Digit Imaging. 2020 Aug;33(4):826-837. doi: 10.1007/s10278-020-00322-4.
8
Prediction of lower-grade glioma molecular subtypes using deep learning.
J Neurooncol. 2020 Jan;146(2):321-327. doi: 10.1007/s11060-019-03376-9. Epub 2019 Dec 21.
10
Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status.
Neuroradiology. 2020 Mar;62(3):319-326. doi: 10.1007/s00234-019-02312-y. Epub 2019 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验