Suppr超能文献

鉴定萘啶和喹啉衍生物作为潜在的 Nsp16-Nsp10 抑制剂:基于计算药理学的研究。

Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: a pharmacoinformatics study.

机构信息

Department of Chemistry, College of Applied Sciences-Hit, University Of Anbar, Anbar, Hit, Iraq.

Department of Chemistry, College of Arts and Sciences, Gaziantep University, Gaziantep, Turkey.

出版信息

J Biomol Struct Dyn. 2022 Jun;40(9):3899-3906. doi: 10.1080/07391102.2020.1851305. Epub 2020 Nov 30.

Abstract

This research is a recent effort to explore some new heterocyclic compounds as novel and potential nonstructural protein-16-nonstructural protein-10 (Nsp16-Nsp10) inhibitors for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibition. The SARS-CoV-2 is causative agent of coronavirus disease 2019 (COVID-19) pandemic. A set of 58 molecules belongs to the naphthyridine and quinoline derivatives have been recently synthesized and considered for structure-based virtual screening against Nsp16-Nsp10. Molecular docking was virtually performed to screen for anti-SARS-CoV-2 activity against Nsp16-Nsp10. Fourteen out of fifty-eight compounds were exhibited binding affinity higher than co-crystal bound ligand s-adenosylmethionine (SAM) toward Nsp16-Nsp10. Further, the pharmacokinetics assessment was carried out and it was found that two molecules possess the acceptable pharmacokinetic profile, hence considered promising Nsp16-Nsp10 inhibitors. The binding interaction analysis was revealed some crucial binding interactions between the final selected two molecules and ligand-binding amino acid residues of Nsp16-Nsp10 protein. In order to explore the characteristics of the protein-ligand complex and how selected small molecules retained inside the receptor cavity in dynamic states, all-atoms conventional molecular dynamics (MD) simulation was performed. Several factors were obtained from the MD simulation trajectory evidently suggested the potentiality of the molecules and stability of the protein-ligand complex. Finally, the binding affinity of both molecules and SAM was explored through the MM-GBSA approach which explained that both molecules possess strong affection towards the Nsp16-Nsp10. Hence, from the pharmacoinformatics assessment, it can be concluded that both heterocyclic compounds might be crucial for SARS-CoV-2 inhibition, subjected to experimental validation.Communicated by Ramaswamy H. Sarma.

摘要

这项研究是为了探索一些新的杂环化合物作为新型潜在的非结构蛋白 16-非结构蛋白 10(Nsp16-Nsp10)抑制剂,以抑制严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)。SARS-CoV-2 是导致 2019 年冠状病毒病(COVID-19)大流行的病原体。一组 58 种属于萘啶和喹啉衍生物的分子最近被合成并考虑用于针对 Nsp16-Nsp10 的基于结构的虚拟筛选。进行了分子对接虚拟筛选以针对 Nsp16-Nsp10 筛选抗 SARS-CoV-2 活性。在 58 种化合物中有 14 种对 Nsp16-Nsp10 的结合亲和力高于共晶结合配体 S-腺苷甲硫氨酸(SAM)。此外,进行了药代动力学评估,发现两种分子具有可接受的药代动力学特征,因此被认为是有前途的 Nsp16-Nsp10 抑制剂。结合相互作用分析揭示了最终选择的两种分子与 Nsp16-Nsp10 蛋白的配体结合氨基酸残基之间的一些关键结合相互作用。为了探索蛋白质-配体复合物的特征以及小分子如何在动态状态下保留在受体腔中,进行了全原子常规分子动力学(MD)模拟。从 MD 模拟轨迹中获得了几个因素,这些因素明显表明了分子的潜力和蛋白质-配体复合物的稳定性。最后,通过 MM-GBSA 方法探索了两种分子和 SAM 的结合亲和力,该方法表明两种分子对 Nsp16-Nsp10 都具有强烈的亲和力。因此,从药物信息学评估可以得出结论,两种杂环化合物可能对 SARS-CoV-2 的抑制至关重要,需要进行实验验证。由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验