Suppr超能文献

单细胞渗透膨胀动力学的特征及其作为新的物理生物标志物。

Characterization of Single-Cell Osmotic Swelling Dynamics for New Physical Biomarkers.

机构信息

Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States.

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

出版信息

Anal Chem. 2021 Jan 26;93(3):1317-1325. doi: 10.1021/acs.analchem.0c02289. Epub 2020 Nov 30.

Abstract

Characterization of cell physical biomarkers is vital to understand cell properties and applicable for disease diagnostics. Current methods used to analyze physical phenotypes involve external forces to deform the cells. Alternatively, internal tension forces via osmotic swelling can also deform the cells. However, an established assumption contends that the forces generated during hypotonic swelling concentrated on the plasma membrane are incapable of assessing the physical properties of nucleated cells. Here, we utilized an osmotic swelling approach to characterize different types of nucleated cells. Using a microfluidic device for cell trapping arrays with truncated hanging micropillars (CellHangars), we isolated single cells and evaluated the swelling dynamics during the hypotonic challenge at 1 s time resolution. We demonstrated that cells with different mechanical phenotypes showed unique swelling dynamics signature. Different types of cells can be classified with an accuracy of up to ∼99%. We also showed that swelling dynamics can detect cellular mechanical property changes due to cytoskeleton disruption. Considering its simplicity, swelling dynamics offers an invaluable label-free physical biomarker for cells with potential applications in both biological studies and clinical practice.

摘要

细胞物理生物标志物的特征对于理解细胞特性和应用于疾病诊断至关重要。目前用于分析物理表型的方法涉及外部力来使细胞变形。或者,通过渗透压肿胀产生的内部张力也可以使细胞变形。然而,一个既定的假设认为,在低渗肿胀期间产生的集中在质膜上的力无法评估有核细胞的物理特性。在这里,我们利用渗透肿胀的方法来表征不同类型的有核细胞。使用带有截断悬挂微柱的微流控装置进行细胞捕获阵列(CellHangars),我们分离了单个细胞,并以 1 秒的时间分辨率评估了在低渗挑战期间的肿胀动力学。我们证明了具有不同机械表型的细胞表现出独特的肿胀动力学特征。不同类型的细胞可以以高达约 99%的准确率进行分类。我们还表明,肿胀动力学可以检测由于细胞骨架破坏而导致的细胞机械性能变化。考虑到其简单性,肿胀动力学为细胞提供了一种无价的无标记物理生物标志物,具有在生物研究和临床实践中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验