Suppr超能文献

开发和验证一种实时人工智能辅助系统用于早期胃癌检测:一项多中心回顾性诊断研究。

Development and validation of a real-time artificial intelligence-assisted system for detecting early gastric cancer: A multicentre retrospective diagnostic study.

机构信息

Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.

Department of Gastroenterology, Wuxi People's Hospital, Affiliated Wuxi People's Hospital with Nanjing Medical University, Wuxi, Jiangsu 214023, China.

出版信息

EBioMedicine. 2020 Dec;62:103146. doi: 10.1016/j.ebiom.2020.103146. Epub 2020 Nov 27.

Abstract

BACKGROUND

We aimed to develop and validate a real-time deep convolutional neural networks (DCNNs) system for detecting early gastric cancer (EGC).

METHODS

All 45,240 endoscopic images from 1364 patients were divided into a training dataset (35823 images from 1085 patients) and a validation dataset (9417 images from 279 patients). Another 1514 images from three other hospitals were used as external validation. We compared the diagnostic performance of the DCNN system with endoscopists, and then evaluated the performance of endoscopists with or without referring to the system. Thereafter, we evaluated the diagnostic ability of the DCNN system in video streams. The accuracy, sensitivity, specificity, positive predictive value, negative predictive value and Cohen's kappa coefficient were measured to assess the detection performance.

FINDING

The DCNN system showed good performance in EGC detection in validation datasets, with accuracy (85.1%-91.2%), sensitivity (85.9%-95.5%), specificity (81.7%-90.3%), and AUC (0.887-0.940). The DCNN system showed better diagnostic performance than endoscopists and improved the performance of endoscopists. The DCNN system was able to process oesophagogastroduodenoscopy (OGD) video streams to detect EGC lesions in real time.

INTERPRETATION

We developed a real-time DCNN system for EGC detection with high accuracy and stability. Multicentre prospective validation is needed to acquire high-level evidence for its clinical application.

FUNDING

This work was supported by the National Natural Science Foundation of China (grant nos. 81672935 and 81871947), Jiangsu Clinical Medical Center of Digestive System Diseases and Gastrointestinal Cancer (grant no. YXZXB2016002), and Nanjing Science and Technology Development Foundation (grant no. 2017sb332019).

摘要

背景

我们旨在开发和验证一种用于检测早期胃癌(EGC)的实时深度卷积神经网络(DCNN)系统。

方法

将来自 1364 名患者的 45240 张内镜图像分为训练数据集(来自 1085 名患者的 35823 张图像)和验证数据集(来自 279 名患者的 9417 张图像)。另外 1514 张图像来自另外三家医院,用于外部验证。我们比较了 DCNN 系统与内镜医生的诊断性能,然后评估了参考或不参考系统的内镜医生的性能。之后,我们评估了 DCNN 系统在视频流中的诊断能力。使用准确性、敏感性、特异性、阳性预测值、阴性预测值和 Cohen's kappa 系数来评估检测性能。

结果

DCNN 系统在验证数据集中的 EGC 检测中表现出良好的性能,准确率(85.1%-91.2%)、敏感性(85.9%-95.5%)、特异性(81.7%-90.3%)和 AUC(0.887-0.940)。DCNN 系统的诊断性能优于内镜医生,并提高了内镜医生的性能。DCNN 系统能够实时处理上消化道内镜视频流以检测 EGC 病变。

结论

我们开发了一种用于 EGC 检测的实时 DCNN 系统,具有较高的准确性和稳定性。需要多中心前瞻性验证来获得其临床应用的高级证据。

资助

本工作得到了国家自然科学基金(批准号:81672935 和 81871947)、江苏省消化系疾病临床医学中心(项目号:YXZXB2016002)和南京市科技发展基金(项目号:2017sb332019)的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d96/7708824/82314b31b5f3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验