Aquafeed Research Center, National Institute of Fisheries Science, 2600 Haean-Ro, Nam Gu, Pohang, 37517, South Korea.
Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang, 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon, 21983, South Korea.
Environ Pollut. 2020 Dec;267:115588. doi: 10.1016/j.envpol.2020.115588. Epub 2020 Sep 11.
Mercury isotope ratios in fish tissues have been used to infer sources and biogeochemical processes of mercury in aquatic ecosystems. More experimental studies are however needed to understand the internal dynamics of mercury isotopes and to further assess the feasibility of using fish mercury isotope ratios as a monitoring tool. We exposed Olive flounder (Paralichthys olivaceus) to food pellets spiked with varying concentrations (400, 1600 ng/g) of methylmercury (MeHg) and inorganic mercury (IHg) for 10 weeks. Total mercury (THg), MeHg concentrations, and mercury isotope ratios (δHg, ΔHg, ΔHg) were measured in the muscle, liver, kidney, and intestine of fish. Fish fed mercury unamended food pellets and MeHg amended food pellets showed absence of internal δHg and ΔHg fractionation in all tissue type. For fish fed IHg food pellets, the δHg and ΔHg values of intestine equilibrated to those of the IHg food pellets. Kidney, muscle, and liver exhibited varying degrees of isotopic mixing toward the IHg food pellets, consistent with the degree of IHg bioaccumulation. Liver showed additional positive δHg shifts (∼0.63‰) from the binary mixing line between the unamended food pellets and IHg food pellets, which we attribute to redistribution or biliary excretion of liver IHg with a lower δHg to other tissues. Significant δHg fractionation in the liver and incomplete isotopic equilibration in the muscle indicate that these tissues may not be suitable for source monitoring at sites heavily polluted by IHg. Instead, fish intestine appears to be a more suitable proxy for identifying IHg sources. The results from our study are essential for determining the appropriate fish tissues for monitoring environmental sources of IHg and MeHg.
鱼类组织中的汞同位素比值可用于推断水生生态系统中汞的来源和生物地球化学过程。然而,需要更多的实验研究来了解汞同位素的内部动态,并进一步评估利用鱼类汞同位素比值作为监测工具的可行性。我们将橄榄石斑鱼(Paralichthys olivaceus)暴露于添加了不同浓度(400、1600ng/g)甲基汞(MeHg)和无机汞(IHg)的食物颗粒中 10 周。测量了鱼肌肉、肝脏、肾脏和肠道中的总汞(THg)、MeHg 浓度和汞同位素比值(δHg、ΔHg、ΔHg)。未添加汞的食物颗粒和添加 MeHg 的食物颗粒喂养的鱼类在所有组织类型中均未表现出内部 δHg 和 ΔHg 分馏。对于摄入 IHg 食物颗粒的鱼类,肠道的 δHg 和 ΔHg 值与 IHg 食物颗粒达到平衡。肾脏、肌肉和肝脏表现出不同程度的同位素混合,向 IHg 食物颗粒靠拢,这与 IHg 的生物积累程度一致。肝脏表现出从未添加食物颗粒和 IHg 食物颗粒之间的二元混合线的正 δHg 偏移(约 0.63‰),我们将其归因于肝脏 IHg 向其他组织的再分配或胆汁排泄,其 δHg 值较低。肝脏中存在明显的 δHg 分馏,肌肉中不完全达到同位素平衡,这表明这些组织可能不适合在受 IHg 严重污染的地点进行来源监测。相比之下,鱼肠似乎是识别 IHg 来源的更合适的替代物。我们的研究结果对于确定监测环境中 IHg 和 MeHg 来源的合适鱼类组织至关重要。