Takacs Constantin N, Scott Molly, Chang Yunjie, Kloos Zachary A, Irnov Irnov, Rosa Patricia A, Liu Jun, Jacobs-Wagner Christine
Department of Biology and ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA.
Microbial Sciences Institute, Yale West Campus, West Haven, CT, 06516, USA.
Appl Environ Microbiol. 2021 Mar 1;87(4). doi: 10.1128/AEM.02519-20. Epub 2020 Nov 30.
The spirochete causes Lyme disease, an increasingly prevalent infection. While previous studies have provided important insight into biology, many aspects, including basic cellular processes, remain underexplored. To help speed up the discovery process, we adapted a CRISPR interference (CRISPRi) platform for use in For efficiency and flexibility of use, we generated various CRISPRi template constructs that produce different basal and induced levels of and carry different antibiotic resistance markers. We characterized the effectiveness of our CRISPRi platform by targeting the motility and cell morphogenesis genes and whose native expression levels span two orders of magnitude. For all four genes, we obtained gene repression efficiencies of at least 95%. We showed by darkfield microscopy and cryo-electron tomography that flagellin (FlaB) depletion reduced the length and number of periplasmic flagella, which impaired cellular motility and resulted in cell straightening. Depletion of FtsI caused cell filamentation, implicating this protein in cell division in Finally, localized cell bulging in MreB- and RodA-depleted cells matched the locations of new peptidoglycan insertion specific to spirochetes of the genus. These results therefore implicate MreB and RodA in the particular mode of cell wall elongation of these bacteria. Collectively, our results demonstrate the efficiency and ease of use of our CRISPRi platform, which should facilitate future genetic studies of this important pathogen. Gene function studies are facilitated by the availability of rapid and easy-to-use genetic tools. Homologous recombination-based methods traditionally used to genetically investigate gene function remain cumbersome to perform in , as they often are relatively inefficient. In comparison, our CRISPRi platform offers an easy and fast method to implement as it only requires a single plasmid transformation step and IPTG addition to obtain potent (>95%) downregulation of gene expression. To facilitate studies of various genes in wild-type and genetically modified strains, we provide over 30 CRISPRi plasmids that produce distinct levels of expression and carry different antibiotic resistance markers. Our CRISPRi platform represents a useful and efficient complement to traditional genetic and chemical methods to study gene function in .
这种螺旋体导致莱姆病,这是一种日益普遍的感染。虽然先前的研究对其生物学特性提供了重要见解,但包括基本细胞过程在内的许多方面仍未得到充分探索。为了加快发现过程,我们对一种用于[具体研究对象]的CRISPR干扰(CRISPRi)平台进行了改造。为了提高使用效率和灵活性,我们构建了各种CRISPRi模板构建体,它们能产生不同基础水平和诱导水平的[相关物质],并携带不同的抗生素抗性标记。我们通过靶向运动性和细胞形态发生基因[具体基因名称1]和[具体基因名称2]来表征我们的CRISPRi平台的有效性,其天然表达水平跨越两个数量级。对于所有这四个基因,我们获得了至少95%的基因抑制效率。我们通过暗视野显微镜和冷冻电子断层扫描表明,鞭毛蛋白(FlaB)的缺失减少了周质鞭毛的长度和数量,这损害了细胞运动性并导致细胞变直。FtsI的缺失导致细胞丝状化,这表明该蛋白在[具体研究对象]的细胞分裂中起作用。最后,在MreB和RodA缺失的细胞中局部细胞肿胀与特定于[具体属名]螺旋体的新肽聚糖插入位置相匹配。因此,这些结果表明MreB和RodA参与了这些细菌细胞壁延伸的特定模式。总体而言,我们的结果证明了我们的CRISPRi平台的效率和易用性,这应该会促进对这种重要病原体的未来遗传学研究。快速且易于使用的遗传工具有助于基因功能研究。传统上用于基因功能遗传研究的基于同源重组的方法在[具体研究对象]中执行起来仍然很麻烦,因为它们通常效率相对较低。相比之下,我们的CRISPRi平台提供了一种简单快速的方法来实施,因为它只需要一步质粒转化步骤并添加IPTG即可获得有效的(>95%)基因表达下调。为了便于对野生型和转基因菌株中的各种基因进行研究,我们提供了30多种CRISPRi质粒,它们能产生不同水平的[相关物质]表达并携带不同的抗生素抗性标记。我们的CRISPRi平台是研究[具体研究对象]基因功能的传统遗传和化学方法的有用且高效的补充。