Suppr超能文献

相似文献

1
MPL resolves genetic linkage in fitness inference from complex evolutionary histories.
Nat Biotechnol. 2021 Apr;39(4):472-479. doi: 10.1038/s41587-020-0737-3. Epub 2020 Nov 30.
2
Coalescent Inference Using Serially Sampled, High-Throughput Sequencing Data from Intrahost HIV Infection.
Genetics. 2016 Apr;202(4):1449-72. doi: 10.1534/genetics.115.177931. Epub 2016 Feb 8.
3
Inferring Epistasis from Genetic Time-series Data.
Mol Biol Evol. 2022 Oct 7;39(10). doi: 10.1093/molbev/msac199.
4
Reconstructing the dynamics of HIV evolution within hosts from serial deep sequence data.
PLoS Comput Biol. 2012;8(11):e1002753. doi: 10.1371/journal.pcbi.1002753. Epub 2012 Nov 1.
7
Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5661-6. doi: 10.1073/pnas.1102036108. Epub 2011 Mar 21.
8
The evolutionary analysis of emerging low frequency HIV-1 CXCR4 using variants through time--an ultra-deep approach.
PLoS Comput Biol. 2010 Dec 16;6(12):e1001022. doi: 10.1371/journal.pcbi.1001022.
9
Scalable linkage-disequilibrium-based selective sweep detection: a performance guide.
Gigascience. 2016 Feb 8;5:7. doi: 10.1186/s13742-016-0114-9. eCollection 2016.
10
Population genomics of intrapatient HIV-1 evolution.
Elife. 2015 Dec 11;4:e11282. doi: 10.7554/eLife.11282.

引用本文的文献

1
Inferring fitness seascapes from evolutionary histories.
bioRxiv. 2025 Jun 8:2025.06.08.658500. doi: 10.1101/2025.06.08.658500.
2
Back-projection improves inference from sparsely sampled genomic surveillance data.
bioRxiv. 2025 Jul 1:2025.06.29.662219. doi: 10.1101/2025.06.29.662219.
3
A binary trait model reveals the fitness effects of HIV-1 escape from T cell responses.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2405379122. doi: 10.1073/pnas.2405379122. Epub 2025 Feb 19.
4
Inferring effects of mutations on SARS-CoV-2 transmission from genomic surveillance data.
Nat Commun. 2025 Jan 7;16(1):441. doi: 10.1038/s41467-024-55593-0.
5
Efficient epistasis inference via higher-order covariance matrix factorization.
bioRxiv. 2024 Oct 14:2024.10.14.618287. doi: 10.1101/2024.10.14.618287.
6
popDMS infers mutation effects from deep mutational scanning data.
Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae499.
9
A binary trait model reveals the fitness effects of HIV-1 escape from T cell responses.
bioRxiv. 2024 Oct 6:2024.03.03.583183. doi: 10.1101/2024.03.03.583183.
10
popDMS infers mutation effects from deep mutational scanning data.
bioRxiv. 2024 Jan 31:2024.01.29.577759. doi: 10.1101/2024.01.29.577759.

本文引用的文献

1
Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness landscape.
Nat Commun. 2020 Jan 17;11(1):377. doi: 10.1038/s41467-019-14174-2.
3
Resolving genetic heterogeneity in cancer.
Nat Rev Genet. 2019 Jul;20(7):404-416. doi: 10.1038/s41576-019-0114-6.
4
Fitness landscape of the human immunodeficiency virus envelope protein that is targeted by antibodies.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E564-E573. doi: 10.1073/pnas.1717765115. Epub 2018 Jan 8.
5
A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy.
Nature. 2017 Nov 23;551(7681):517-520. doi: 10.1038/nature24473. Epub 2017 Nov 8.
6
Inverse statistical physics of protein sequences: a key issues review.
Rep Prog Phys. 2018 Mar;81(3):032601. doi: 10.1088/1361-6633/aa9965.
7
The dynamics of molecular evolution over 60,000 generations.
Nature. 2017 Nov 2;551(7678):45-50. doi: 10.1038/nature24287. Epub 2017 Oct 18.
8
Quantifying Selection with Pool-Seq Time Series Data.
Mol Biol Evol. 2017 Nov 1;34(11):3023-3034. doi: 10.1093/molbev/msx225.
10
mutation rates and the landscape of fitness costs of HIV-1.
Virus Evol. 2017 Mar 2;3(1):vex003. doi: 10.1093/ve/vex003. eCollection 2017 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验